Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 ± 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 ± 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.Amazon Region Protected Areas | effectiveness | reducing emissions from deforestation and forest degradation | simulation model | opportunity cost
Recent climate talks in Copenhagen reaffirmed the crucial role of reducing emissions from deforestation and degradation (REDD). Creating and strengthening indigenous lands and other protected areas represents an effective, practical, and immediate REDD strategy that addresses both biodiversity and climate crises at once.
River dolphins are strongly affected by the construction of hydroelectric dams. Potential isolation in subpopulations above and below such dams and the resulting low genetic variability of these subpopulations can cause extinction at a local level. Here we aimed to estimate density and population size of South American river dolphins (boto Inia geoffrensis and tucuxi Sotalia fluviatilis), map their distribution, and estimate potential biological removal (PBR) limits in order to evaluate the effects of population fragmentation between planned dams in the Tapajós River, Amazonian basin, Brazil. Boat-based surveys were conducted following a line transect sampling protocol covering different dolphin habitats in 2 stretches of the river divided by rapids. The mark−recapture distance sampling method was applied to account for animals missed on the trackline. After the estimation of population sizes by habitat, PBR was calculated. The farthest upriver sighting of tucuxis was close to the São Luiz do Tapajós rapids, whereas the farthest upriver sighting of botos was upstream of the rapids, suggesting that botos move upstream through the rapids. Estimated abundance of tucuxis (3372 ind., CV = 0.38) was twice as high as that estimated for botos (1815 ind., CV = 0.4). The PBR ranged from 11 to 18 ind. for boto and 21 to 34 for tucuxi. Throughout this study, we identified low abundances of river dolphins compared to other Amazon rivers. Boto may not be sustainable at a population level, due primarily to population fragmentation which would result from the construction of the proposed dams. Precautionary measures are urgently needed before construction of dams begins in the Tapajós River.
In the last two decades, Brazil has advanced significantly with the expansion and improvement of its national system of protected areas. Until recently most of the expansion was concentrated in the Amazon region (with useful lessons). It also had an uneven ecological representation of coastal and marine ecosystems, concentrated in coastal waters. Despite significant advances, the levels of funding, staff and stakeholders' engagement remain relatively low for such a vast system. Within the past few years, key elements of a new strategy for protection of coastal and marine areas have started to emerge, combined with some participatory processes and a focus on expansion of the total area protected (from <1.5% protection of the country's marine area). These included: a renewed focus on priority areas for conservation; attention to national and international commitments and targets; clarity about the need for partnerships and funding; better engagement of Brazilian society and stakeholders; new, and more collaborative, models of protected areas management and conservation; and openness in the relationships with wider society. Significant results of this effort have started to appear: new large mosaics of oceanic protected areas were created; Amazon mangroves were recognized by the Ramsar Convention; new mangrove protected areas were created, besides other ones proposed; project proposals are under development with partners for better funding and sharing of responsibility; and there is a better engagement with stakeholders. The building of the Brazilian Blue Initiative is underway. The implementation of the proposed 15‐year marine strategy is at its onset: partnerships need to be strengthened and substantial funding is required. It will only be possible to manage the larger system of protected areas if there are more collaborative and innovative models for protected areas and conservation management. These should include partnerships with civil society, local and traditional communities and the private sector, as well as greater engagement of scientists and research institutions, stronger and more qualified tourism, volunteer work, etc. Further innovative funding mechanisms will also be needed along the way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.