IL-17A is a primary driver of skin pathology in patients with psoriasis, and serum BD-2 is an easily measurable biomarker of IL-17A-driven skin pathology.
The behavior of proteins at biological and synthetic interfaces is often characterized by a strong history dependence caused by long relaxation times or irreversible transitions. In this work, we introduce the rate of adsorption as a means to systematically quantify the extent, and identify the underlying causes, of history dependence. We use multistep kinetic experiments in which the ith step is an exposure of a Si(Ti)O2 surface to a flowing fibronectin or cytochrome c solution of concentration ci for a time ti (ci ؍ 0 corresponds to a rinse) and measure the protein adsorption by optical waveguide light mode spectroscopy. The rate of adsorption is sensitive to the structure of the adsorbed layer, and we observe it to greatly increase, for a given adsorbed density, when going from a first to a subsequent adsorption step. This increase is most pronounced when the duration of the initial adsorption step is long. We attribute these observations to the gradual and irreversible formation of protein clusters or locally ordered structures and use them to explain previous underestimates of kinetic data by mesoscopic model descriptions. A thorough understanding of these complex postadsorption events, and their impact on history dependence, is essential for many physiological and biotechnological processes. Optical waveguide lightmode spectroscopy is a promising technique for their macroscopic quantification.optical waveguide lightmode spectroscopy ͉ interfacial kinetics ͉ surface diffusion ͉ surface aggregation
Controlling aberrant protein kinase activity is a promising strategy for a variety of diseases, particularly cancer. Hence, the development of kinase inhibitors is currently a focal point for pharmaceutical research. In this study we utilize a chip-based reverse phase protein array (RPA) platform for profiling of kinase inhibitors in cell-based assays. In combination with the planar wave-guide technology the assay system has an absolute LOD down to the low zeptomole range. A431 cell lysates were analyzed for the activation state of key effectors in the epidermal growth factor (EGF) and insulin signaling pathways to validate this model for compound screening. A microtiter-plate format for growing, treating, and lysing cells was shown to be suitable for this approach, establishing the value of the technology as a screening tool for characterization of large numbers of kinase inhibitors against a wide variety of cellular signaling pathways. Moreover, the reverse array format allows rapid development of site-specific phosphorylation assays, since in contrast to ELISA type systems only a single antigen-specific antibody is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.