This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
The present study involves experiments and modelling aimed at characterizing the passive structural mechanical behavior of the chronic hypoxic lamb thoracic aorta, whose gestation, birth and postnatal period were carried at high altitude (3600 masl). To this end, the mechanical response was studied via tensile and pressurization tests. The tensile and pressurization tests measurements were used simultaneously to calibrate the material parameters of the Gasser–Holzapfel–Ogden (GHO) hyperelasctic anisotropic constitutive model through an analytical-numerical optimization procedure solved with an evolutionary strategy that guarantees a stable response of the model. The model and procedure of calibration adequately adjust to the material behavior in a wide deformation range with an appropriate physical description. The results of this study predict the mechanical response of the lamb thoracic aorta under generalized loading states like those that can occur in physiological conditions and/or in systemic arterial hypertension. Finally, the novel use of the evolutionary strategy, together with the set of experiments and tools used in this study, provide a robust alternative to validate biomechanical characterizations.
In this work, we propose a reliable and stable procedure to characterize anisotropic hyperelastic materials. For this purpose, a metaheuristic optimization method known as evolutionary strategies is used. The advantage of this technique with respect to traditional methods used for non-linear optimization, such as the Levenberg–Marquardt Method, is that this metaheuristic algorithm is oriented to the global optimization of a problem, is independent of gradients and allows to solve problems with constraints. These features are essential when characterizing hyperelastic materials that have non-linearities and are conditioned to regions of stability. To characterize the mechanical behavior of the arteries analyzed in this work, the anisotropic hyperelastic models of Holzapfel–Gasser–Ogden and Gasser–Holzapfel–Ogden are used. An important point of the analysis is that these models may present a non-physical behavior: this drawback is overcome by defining a new criterion of stabilization in conjunction with the evolutionary strategies. Finally, the finite element simulations are used in conjunction with the evolutionary strategies to characterize experimental data of the artery pressurization test, ensuring that the parameters obtained are stable and representative of the material response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.