Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon.
The U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS) tetraploid cherry (Prunus L. sp.) collection at Geneva, N.Y., contains ≈75 accessions of sour cherry (P. cerasus L.), ground cherry (P. fruticosa Pall.), and their hybrids. Accurate and unambiguous identification of these accessions is essential for germplasm preservation and use. Simple sequence repeats (SSRs) are currently the markers of choice for germplasm fingerprinting because they characteristically display high levels of polymorphism. Recently SSR primer pairs from sweet cherry (P. avium L.), sour cherry, and peach [(P. persica L. Batsch (Peach Group)] have been reported. Ten SSR primer pairs were tested on 59 tetraploid cherry accessions to determine if they could differentiate among the accessions. Scorable SSR fragments were produced with all primer-accession combinations. The cherry accessions exhibited high levels of polymorphism with 4 to 16 different putative alleles amplified per primer pair. Most of the putative alleles were rare with frequencies <0.05. Heterozygosity values ranged from 0.679 to 1.00, while gene diversity values ranged from 0.655 to 0.906. The primer pairs differentiated all but two of the 59 cherry accessions. Based upon the ability of the SSR data to differentiate the cherry accessions and the high level of gene diversity, we propose that all the tetraploid cherry accessions in the USDA/ARS collection be fingerprinted to provide a mechanism to verify the identity of the individual accessions. The fingerprinting data are available on the World Wide Web (http://www.ars-grin.gov/gen/cherry.html) so that other curators and scientists working with cherry can verify identities and novel types in their collections and contribute to a global database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.