MicroRNAs (miRNAs) inhibit HIV-1 expression by either modulating host innate immunity or by directly interfering with viral mRNAs. We evaluated the expression of 377 miRNAs in CD4 ؉ T cells from HIV-1 é lite long-term nonprogressors (é LTNPs), naive patients, and multiply exposed uninfected (MEU) patients, and we observed that the é LTNP patients clustered with naive patients, whereas all MEU subjects grouped together. The discriminatory power of miRNAs showed that 21 miRNAs significantly differentiated é LTNP from MEU patients and 23 miRNAs distinguished naive from MEU patients, whereas only 1 miRNA (miR-155) discriminated é LTNP from naive patients. We proposed that miRNA expression may discriminate between HIV-1-infected and -exposed but negative patients. Analysis of miRNAs expression after exposure of healthy CD4 ؉ T cells to gp120 in vitro confirmed our hypothesis that a miRNA profile could be the result not only of a productive infection but also of the exposure to HIV-1 products that leave a signature in immune cells. The comparison of normalized Dicer and Drosha expression in ex vivo and in vitro condition revealed that these enzymes did not affect the change of miRNA profiles, supporting the existence of a Dicer-independent biogenesis pathway. (Blood. 2012;119(26):6259-6267)
BackgroundComplementarity-determining regions (CDRs) are immunoglobulin (Ig) hypervariable domains that determine specific antibody (Ab) binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here.Methodology/Principal FindingsCDR-based synthetic peptides of murine and human monoclonal Abs directed to: a) a protein epitope of Candida albicans cell wall stress mannoprotein; b) a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c) a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains.Conclusions/SignificanceThe high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small sized synthetic peptides representing Ig CDRs and the possibility of peptide engineering and chemical optimization associated to new delivery mechanisms are expected to give rise to a new generation of therapeutic agents.
Thiosemicarbazones display a wide antimicrobial activity by targeting bacteria, fungi, and viruses. Here, we report our studies on the antiviral activity of two thiosemicarbazone metal complexes, [bis(citronellalthiosemicarbazonato)nickel(II)] and [aqua(pyridoxalthiosemicarbazonato)copper(II)] chloride monohydrate, against the retroviruses HIV-1 and HTLV-1/-2. Both compounds exhibit antiviral properties against HIV but not against HTLVs . In particular, the copper complex shows the most potent anti-HIV activity by acting at the post-entry steps of the viral cycle.
The master regulator of MHC-II gene transcription, class II transactivator (CIITA), acts as a potent inhibitor of human T cell leukemia virus type 2 (HTLV-2) replication by blocking the activity of the viral Tax-2 transactivator. Here, we show that this inhibitory effect takes place at the nuclear level and maps to the N-terminal 1-321 region of CIITA, where we identified a minimal domain, from positions 64 -144, that is strictly required to suppress Tax-2 function. Furthermore, we show that Tax-2 specifically cooperates with cAMP response element binding protein-binding protein (CBP) and p300, but not with p300͞CBP-associated factor, to enhance transcription from the viral promoter. This finding represents a unique difference with respect to Tax-1, which uses all three coactivators to transactivate the human T cell leukemia virus type 1 LTR. Direct sequestering of CBP or p300 is not the primary mechanism by which CIITA causes suppression of Tax-2. Interestingly, we found that the transcription factor nuclear factor Y, which interacts with CIITA to increase transcription of MHC-II genes, exerts a negative regulatory action on the Tax-2-mediated HTLV-2 LTR transactivation. Thus, CIITA may inhibit Tax-2 function, at least in part, through nuclear factor Y. These findings demonstrate the dual defensive role of CIITA against pathogens: it increases the antigen-presenting function for viral determinants and suppresses HTLV-2 replication in infected cells. Tax-2 MHC class II ͉ viral replication ͉
Human T-cell lymphotropic virus (HTLV) type II has spread among intravenous drug users (IDUs), many of whom are coinfected with HIV-1. We have investigated the rate of HTLV-II infection in 3574 Italian IDUs screened for HIV-1, HTLV-I, and HTLV-II from 1986 to the present. HTLV-II proviral load was determined by a real-time polymerase chain reaction specifically designed for tax amplification. The frequency of HTLV-II infection was 6.7% among HIV-1-positive subjects and 1.1% among HIV-1-negative subjects (P < 0.0001). For examination of AIDS progression, a group of 437 HIV-1-monoinfected subjects and another group of 96 HIV-1/HTLV-II-coinfected subjects were monitored. Enrollees were matched at entry by CD4 cell counts and followed for an average of 13 years. HIV-1/HTLV-II coinfection was associated with older age (P < 0.0001) and higher CD4 (P < 0.0001) and CD8 (P < 0.001) cell counts compared with monoinfected IDUs. The number of long-term nonprogressors for AIDS was significantly higher (P < 0.0001) among coinfected patients (13 [13.5%] of 96 patients) than HIV monoinfected patients (5 [1.1%] of 437 patients), showing that HTLV-II exerts a protective role. An increased incidence of liver disease and hepatitis C virus positivity among coinfected IDUs was observed. Five coinfected subjects undergoing antiretroviral therapy showed a significant (P < 0.05) increase in HTLV-II proviral load concomitant to a decrease in HIV-1 viremia, suggesting that the treatment is ineffective against HTLV-II infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.