Purpose: We have shown previously that the MHC class II^negative murine TS/A adenocarcinoma is rejected in vivo if induced to express MHC class II molecules by transfection of the MHC class II transactivator CIITA. In this study, we explored the immunologic basis of tumor rejection and the correlation between histopathology of tumor tissue and immune rejection. Experimental Design: StableTS/A-CIITA transfectants were generated and injected into mice. In vivo cell depletion, immunohistochemistry of tumor tissues, and immune functional assays were done to assess the cellular and immunologic basis of rejection.
The class II transactivator (CIITA) is the master regulator of major histocompatibility complex class II (MHCII) transcription. Its activity is regulated at the post-transcriptional level by phosphorylation and oligomerization. This aggregation mapped to and depended on the phosphorylation of residues between positions 253 and 321 in CIITA, which resulted in a dramatic accumulation of the protein and increased expression of MHCII genes in human promonocytic U937 cells, which represent immature antigen-presenting cells. Thus, the post-transcriptional modification of CIITA plays an important role in the immune response.
BackgroundHuman T cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of a severe form of neoplasia designated Adult T cell Leukaemia (ATL). It is widely accepted that the viral transactivator Tax-1 is the major viral product involved in the onset, but not in the maintenance, of neoplastic phenotype, as only 30–40% of ATL cells express Tax-1. It has been recently demonstrated that HBZ (HTLV-1 bZIP factor), a protein encoded by the minus strand of HTLV-1 genome, constantly expressed in infected cells and in ATL tumor cells, is also involved in the pathogenesis of leukaemia. The full role played by HBZ in oncogenesis is not clarified in detail also because of the limited availability of tools to assess quantitative expression, subcellular location and interaction of HBZ with host factors in ATL.ResultsBy the use of the first reported monoclonal antibody against HBZ, 4D4-F3, generated in our laboratory it has been possible to carefully assess for the first time the above parameters in HTLV-1 chronically infected cells and, most importantly, in fresh leukemic cells from patients. Endogenous HBZ is expressed in speckle-like structures localized in the nucleus. The calculated number of endogenous HBZ molecules varies between 17.461 and 39.615 molecules per cell, 20- to 50-fold less than the amount expressed in HBZ transfected cells used by most investigators to assess the expression, function and subcellular localization of the viral protein. HBZ interacts in vivo with p300 and JunD and co-localizes only partially, and depending on the amount of expressed HBZ, not only with p300 and JunD but also with CBP and CREB2.ConclusionsThe possibility to study endogenous HBZ in detail may significantly contribute to a better delineation of the role of HBZ during HTLV-1 infection and cellular transformation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12977-015-0186-0) contains supplementary material, which is available to authorized users.
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of an aggressive malignancy of CD4؉ T lymphocytes. Since the viral transactivator Tax-1 is a major player in T-cell transformation, targeting Tax-1 protein is regarded as a possible strategy to arrest viral replication and to counteract neoplastic transformation. We demonstrate that CIITA, the master regulator of major histocompatibility complex class II gene transcription, inhibits HTLV-1 replication by blocking the transactivating function of Tax-1 both when exogenously transfected in 293T cells and when endogenously expressed by a subset of U937 promonocytic cells. Tax-1 and CIITA physically interact in vivo via the first 108 amino acids of Tax-1 and two CIITA adjacent regions (amino acids 1 to 252 and 253 to 410). Interestingly, only CIITA 1-252 mediated Tax-1 inhibition, in agreement with the fact that CIITA residues from positions 64 to 124 were required to block Tax-1 transactivation. CIITA inhibitory action on Tax-1 correlated with the nuclear localization of CIITA and was independent of the transcription factor NF-YB, previously involved in CIITA-mediated inhibition of Tax-2 of HTLV-2. Instead, CIITA severely impaired the physical and functional interaction of Tax-1 with the cellular coactivators p300/CBP-associated factor (PCAF), cyclic AMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1), which are required for the optimal activation of HTLV-1 promoter. Accordingly, the overexpression of PCAF, CREB, and ATF1 restored Tax-1-dependent transactivation of the viral longterminal-repeat promoter inhibited by CIITA. These findings strongly support our original observation that CIITA, beside increasing the antigen-presenting function for pathogen antigens, acts as an endogenous restriction factor against human retroviruses by blocking virus replication and spreading.
The effectiveness of some seawater components, such as magnesium, potassium, sodium, sulfate and chloride ions, and humic acid, in the control of calcium carbonate composition, morphology, and phase distribution was studied. These components were tested singularly, in pairs, and all together. It was observed that magnesium ions phase distribution control is influenced by the presence of other ions and that in the presence of a high content of magnesium ions monohydrocalcite precipitates. Moreover, in the presence of magnesium or potassium ions the calcite crystals show modified rhomohedral morphologies, while the presence of sulfate ions favors their aggregation. Humic acids have an inhibition effect on calcium carbonate precipitation, induce the formation of empty spheres of vaterite, and modify the calcium carbonate phase distribution. The isomorphic substitution of magnesium to calcium in the calcite structure is favored by some seawater ions and enhanced by the presence of humic acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.