Representing and understanding the three-dimensional (3D) structural information of protein-ligand complexes is a critical step in the rational drug discovery process. Traditional analysis methods are proving inadequate and inefficient in dealing with the massive amount of structural information being generated from X-ray crystallography, NMR, and in silico approaches such as structure-based docking experiments. Here, we present SIFt (structural interaction fingerprint), a novel method for representing and analyzing 3D protein-ligand binding interactions. Key to this approach is the generation of an interaction fingerprint that translates 3D structural binding information from a protein-ligand complex into a one-dimensional binary string. Each fingerprint represents the "structural interaction profile" of the complex that can be used to organize, analyze, and visualize the rich amount of information encoded in ligand-receptor complexes and also to assist database mining. We have applied SIFt to tackle three common tasks in structure-based drug design. The first involved the analysis and organization of a typical set of results generated from a docking study. Using SIFt, docking poses with similar binding modes were identified, clustered, and subsequently compared with conventional scoring function information. A second application of SIFt was to analyze approximately 90 known X-ray crystal structures of protein kinase-inhibitor complexes obtained from the Protein Databank. Using SIFt, we were able to organize the structures and reveal striking similarities and diversity between their small molecule binding interactions. Finally, we have shown how SIFt can be used as an effective molecular filter during the virtual chemical library screening process to select molecules with desirable binding mode(s) and/or desirable interaction patterns with the protein target. In summary, SIFt shows promise to fully leverage the wealth of information being generated in rational drug design.
A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.
Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies. These covalent binders exhibited improved potency in comparison to noncovalent congeners, as demonstrated in biochemical and cell-based assays. We identified Lys234 as the residue involved in covalent modification, via point mutation. The covalent binders discovered in this study will serve as useful starting points for the development of Mcl-1 therapeutics and probes to interrogate Mcl-1-dependent biological phenomena.
Centrosome amplification is observed in many human cancers and has been proposed to be a driver of both genetic instability and tumorigenesis. Cancer cells have evolved mechanisms to bundle multiple centrosomes into two spindle poles to avoid multipolar mitosis that can lead to chromosomal segregation defects and eventually cell death. KIFC1, a kinesin-14 family protein, plays an essential role in centrosomal bundling in cancer cells, but its function is not required for normal diploid cell division, suggesting that KIFC1 is an attractive therapeutic target for human cancers. To this end, we have identified the first reported small molecule inhibitor AZ82 for KIFC1. AZ82 bound specifically to the KIFC1/microtubule (MT) binary complex and inhibited the MT-stimulated KIFC1 enzymatic activity in an ATP-competitive and MT-noncompetitive manner with a K i of 0.043 μM. AZ82 effectively engaged with the minus end-directed KIFC1 motor inside cells to reverse the monopolar spindle phenotype induced by the inhibition of the plus end-directed kinesin Eg5. Treatment with AZ82 caused centrosome declustering in BT-549 breast cancer cells with amplified centrosomes. Consistent with genetic studies, our data confirmed that KIFC1 inhibition by a small molecule holds promise for targeting cancer cells with amplified centrosomes and provided evidence that functional suppression of KIFC1 by inhibiting its enzymatic activity could be an effective means for developing cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.