1. The European eel population has decreased drastically during recent decades, and new EU-legislation calls for measures to change this negative trend. This decline has been attributed to a number of factors, including habitat fragmentation by structural barriers that prevent eels moving between freshwater and the sea. The success of downstream migrating adult silver eels migrating past a hydroelectric plant (HEP) in Sweden was examined by radio-telemetry, and the results were considered in a historical context by analysing catch data from the river for 1957-2006. 2. The choice of routes and passage success were quantified for three treatment groups and one control group of silver eels. The first treatment, the reservoir group (n = 50), was released into the reservoir upstream of the HEP, and these fish could proceed downstream by passing through the HEP (20 mm rack and turbines) or by entering the spill gates into the former channel, bypassing the HEP. The second treatment group (inside rack, n = 15) was released downstream of the 20-mm rack and had to pass through the turbines to continue migration to the sea. The third treatment group consisted of dead radio-tagged eels (n = 6) that were released into the turbines to study the extent of drifting by dead individuals. Finally, the control group (n = 50) was released downstream of the HEP to test for effects of confounding factors. 3. Most live individuals displayed migratory behaviour and continued to proceed downstream after release. Only 8% of the fish released in the reservoir or downstream of the HEP (control) did not migrate. The probability of reaching the next HEP, 24 km further downstream, was high for the control group (96%) and the reservoir-released individuals that passed the HEP via the spill gates and the former channel (83%). Survival was low and size-dependent for the individuals that passed the turbines (40%) and even lower for the individuals that had to pass through the rack and the turbines (26%). The overall passage success for eels released in the reservoir was 30%, including both routes. 4. Annual catch data from 1957 to 2006 showed that the number of eels in the River Ä tran has decreased. Despite this decrease, escapement biomass has remained unchanged, because of the fact that the mean size of eels has doubled. Passage data from 2007 show that changes in size and abundance have resulted in a reduction of relative escapement to the sea to values that are 21-24% of what they were in 1957-66. However, this low level of 2167 escapement could potentially be rectified if appropriate measures facilitating HEP passage are successfully implemented, since the potential escapement biomass in the river, owing to the large size of the eels, has changed little since the 1950s.
Prediction of low flows in ungauged catchments is needed in many branches of water resources management, including water availability and river ecology studies. In this paper we analyze the regional variability of q 95 , i.e., the specific discharge that is exceeded 95% of the time, in North-Western Italy (Piemonte and Valle d'Aosta Regions). Multiple regressions with morphoclimatic catchment characteristics are applied in subregions obtained through four classification methods: Seasonality Indices (SI), Classification and Regression Trees (CRT), Residual Pattern Approach (RPA) and Weighted Cluster Analysis (WCA). All the classification methods separate the South-Eastern Apennine-Mediterranean area from the rest of the study domain (the Alps mountain range), even if they use different criteria to carry out this division (e.g., the percentage of forest, seasonality of low flows, combination of several parameters). In the Apennine-Mediterranean part of the area, low flows occur in summer with a long period of drought and are mainly due to dry climate, moderate snowpack storage and high evapotranspiration. In Alpine catchments low flows occur in winter and vary according to precipitation, elevation, interactions with aquifers and land cover. Within the Alpine mountain range the CRT algorithm identifies a number of small high-elevation catchments in which the intense drought period during winter has the soil freezing processes as the driving force. From a statistical point of view, the CRT model outperforms the P. Vezza (B) · M. Rosso P. Vezza et al. models obtained by the other classification techniques in terms of explained variance (69%). Because of this, and given the meaningful hydrological interpretation of the results, we use the CRT model for the regionalization of q 95 in Piemonte and Valle d'Aosta. Lastly, as operational procedure for future low flow regionalization studies, we suggest that more classification methods should be applied to assist the critical analysis of the results.
Summary The European eel (Anguilla anguilla) is a critically endangered species, and one major threat is the survival of silver eels migrating downstream towards the sea from lake and river rearing areas. During this migration, many eels are impinged and die on intake racks, or are injured or killed when passing through turbines. Intake racks at a hydroelectric plant were modified to avoid impingement and to collect eels without injury; high mortality on both racks and in turbines was previously documented. Modifications consisted of reducing the rack gap width from 20 to 18 mm, decreasing the rack slope from 63 to 35 degrees, increasing the rack surface area by 58% and installing six openings in the rack leading to traps. Downstream passage conditions for silver eels at the hydroelectric plant were significantly improved, reducing mortality from >70% at the old steep 20 mm racks to <10% at the modified 18 mm rack collection facility. No tagged eels were impinged and killed on the racks, and 80% entered the collection facility. Survival can probably be improved even more, as the individuals that passed the facility most likely escaped through holes in the traps. Moreover, injured untagged eels were still encountered at the modified racks, illustrating the need for rehabilitative measures to be implemented at all obstacles between the main eel rearing areas and the sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.