How many dimensions (trait‐axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high‐quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large‐scale community structure.
The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
All living organisms are linked through trophic relationships with resources and consumers, the balance of which determines overall ecosystem stability and functioning. Ecological research has identified a multitude of mechanisms that contribute to this balance, but ecologists are now challenged with predicting responses to global environmental changes. Despite a wealth of studies highlighting likely outcomes for specific mechanisms and subsets of a system (e.g., plants, plant-herbivore or predator-prey interactions), studies comparing overall effects of changes at multiple trophic levels are rare. We used a combination of experiments in a grassland system to test how biomass at the plant, herbivore and natural enemy (parasitoid) levels responds to the interactive effects of two key global change drivers: warming and nitrogen deposition. We found that higher temperatures and elevated nitrogen generated a multitrophic community that was increasingly dominated by herbivores. Moreover, we found synergistic effects of the drivers on biomass, which differed across trophic levels. Both absolute and relative biomass of herbivores increased disproportionately to that of plants and, in particular, parasitoids, which did not show any significant response to the treatments. Reduced parasitism rates mirrored the profound biomass changes in the system. These findings carry important implications for the response of biota to environmental changes; reduced top-down regulation is likely to coincide with an increase in herbivory, which in turn is likely to cascade to other fundamental ecosystem processes. Our findings also provide multitrophic data to support the general concern of increasing herbivore pest outbreaks in a warmer world.
Endosymbionts occur in most plant species and may affect interactions among herbivores and their predators through the production of toxic alkaloids. Here, we ask whether effects of mycotoxins produced by the symbiosis of the fungal endophyte Neotyphodium lolii and the grass Lolium perenne are transmitted to the aphidophagous ladybird Coccinella septempunctata when feeding on cereal aphids Rhopalosiphum padi on infected plants. The larval development of coccinellids was extended, while their survival was reduced when feeding exclusively on aphids from infected plants. Ladybirds developing on aphids from infected plants showed reduced fecundity and impaired reproductive performance. Body size and symmetries of ladybird adults were not affected by the endophytes. Consistently strong, negative effects of endophytes on the lifetime performance of ladybirds indicates that mycotoxins are transmitted along food chains, causing significant damage for top predators. Such cascading effects will influence the population dynamics of aphid predators in the long term and could feedback to the primary plant producers.
ABSTRACT. Reducing carbon emissions through avoided deforestation and forest degradation and enhancement of carbon stocks (REDD+) is key to mitigating global climate change. The aim of REDD+ social safeguards is to ensure that REDD+ does not harm, and actually benefits, local people. To be eligible for results-based compensation through REDD+, countries should develop nationallevel safeguard information systems to monitor and report on the impacts of REDD+. Although safeguards represent a key step for promoting social responsibility in REDD+, they are challenging to operationalize and monitor. We analyzed the impacts of different types of REDD+ interventions (incentives vs. disincentives) on key safeguard-relevant indicators, i.e., tenure security, participation, and subjective well-being, as well as on reported forest clearing. We used household-level data collected in Brazil, Peru, Cameroon, Tanzania, Indonesia, and Vietnam from approximately 4000 households in 130 villages at two points in time (2010-2012 and 2013-2014). Our findings highlight a decrease in perceived tenure security and overall perceived well-being over time for households exposed to disincentives alone, with the addition of incentives helping to alleviate negative effects on well-being. In Brazil, although disincentives were associated with reduced reported forest clearing by smallholders, they were the intervention that most negatively affected perceived well-being, highlighting a clear trade-off between carbon and noncarbon benefits. Globally, although households exposed to REDD+ interventions were generally aware of local REDD+ initiatives, meaningful participation in initiative design and implementation lagged behind. Our analysis contributes to a relatively small literature that seeks to operationalize REDD+ social safeguards empirically and to evaluate the impacts of REDD+ interventions on local people and forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.