CST (BART BARF0) family viral RNAs are expressed in several types of Epstein-Barr virus (EBV) infection, including EBV-associated cancers.Many different spliced forms of these RNAs have been described; here we have clarified the structures of some of the more abundant splicing patterns. We report the first cDNAs representing a full-length CST mRNA from a clone library and further characterize the transcription start. The relative abundance of splicing patterns and genomic analysis of the open reading frames (ORFs) suggest that, in addition to the much studied BARF0 ORF, there may be important products made from some of the upstream ORFs in the CST RNAs. Potential biological functions are identified for two of these. The product of the RPMS1 ORF is shown to be a nuclear protein that can bind to the CBF1 component of Notch signal transduction. RPMS1 can inhibit the transcription activation induced through CBF1 by NotchIC or EBNA-2. The protein product of another CST ORF, A73, is shown to be a cytoplasmic protein which can interact with the cell RACK1 protein. Since RACK1 modulates signaling from protein kinase C and Src tyrosine kinases, the results suggest a possible role for CST products in growth control, perhaps consistent with the abundant transcription of CST RNAs in cancers such as nasopharyngeal carcinoma.In several types of infection, in addition to the well-established EBNA, LMP and EBER genes, Epstein-Barr virus (EBV) has been found to express various spliced RNAs transcribed rightward from the region spanning 150,000 to 161,000 on the B95-8 EBV genetic map. These have been referred to as complementary strand transcripts (CSTs), BamHI A rightward transcripts (BARTs), or the BARF0 RNAs. RNAs of this type were originally identified in cDNA made from the C15 xenograft culture of nasopharyngeal carcinoma (NPC) tissue (17). Similar RNAs were subsequently found in various EBV-positive NPC tumor biopsies and xenografts, Burkitt's lymphoma, lymphoid cell lines (LCLs) (3,6,11,15,19,31,43), and biopsies of oral hairy leukoplakia (24). Expression of CST RNAs has also been demonstrated in peripheral blood of normal human carriers of EBV (5), sera from NPC patients have been found to immunoprecipitate a protein product of the BARF0 open reading frame (ORF) made in vitro (12), and cytotoxic T lymphocytes that respond to a peptide derived from BARF0 have been identified in EBV-infected people (22).A very complicated picture of alternatively spliced CST RNAs has built up (36, 38), but some of the proposed structures have been deduced using very sensitive reverse transcription (RT)-PCR methods or have been only single isolates from cDNA libraries, and thus they may yet represent very minor species within the family of RNAs that can be expressed. Predominant sizes of the RNAs expressed have been deduced from Northern blots, but these have only partly been related to the spliced RNA structures. In addition, the coding content of the CST RNAs remains uncertain. Most attention has focused on the BARF0 ORF, particularly a sp...
Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases.IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known type 1/type 2 strains are demonstrated, and a novel classification of EBNA1 and the BART miRNAs is proposed.
RUNX transcription factors are important in development and in numerous types of human cancer. They act as either transcriptional activators or repressors and can be protooncogenes or tumour suppressors. Understanding their regulation and interaction may explain how RUNX factors contribute to such different and often opposing biological processes. We show that RUNX3 regulates RUNX1 expression, contributing to the mutually exclusive expression of RUNX3 and RUNX1 in human B lymphoid cell lines. RUNX3 repressed the RUNX1 P1 promoter by binding specifically to conserved RUNX sites near the transcription start of the promoter. siRNA inhibition of RUNX3 in lymphoblastoid cells resulted in increased RUNX1 expression, indicating that continuous expression of physiological levels of RUNX3 is required to maintain repression. Furthermore, expression of RUNX3 was required for efficient proliferation of B cells immortalized by Epstein-Barr virus. Cross-regulation between different RUNX family members is therefore a means of controlling RUNX protein expression and must now be considered in the interpretation of pathological changes due to loss of RUNX3 tumour suppressor function or following gene duplication or translocation events.
Two sequences required for activity of the Epstein-Barr virus BART RNA promoter in transfection assays have been identified by site-directed mutagenesis. One contains a consensus AP-1 site; the other has some similarity to Ets and Stat consensus binding sites. Candidate sequences were suggested by mapping a region of unmethylated DNA in EBV around the BART promoter followed by in vivo footprinting the promoter in the C666-1 nasopharyngeal carcinoma cell line, which expresses BART RNAs. The data are presented in the context of a revised EBV DNA sequence, known as EBV wt, that is proposed as a future standard sequence for EBV.
Sequence differences in the EBNA-2 protein mediate the superior ability of type 1 Epstein-Barr virus (EBV) to transform human B cells into lymphoblastoid cell lines compared to that of type 2 EBV. Here we show that changing a single amino acid (S442D) from serine in type 2 EBNA-2 to the aspartate found in type 1 EBNA-2 confers a type 1 growth phenotype in a lymphoblastoid cell line growth maintenance assay. This amino acid lies in the transactivation domain of EBNA-2, and the S442D change increases activity in a transactivation domain assay. The superior growth properties of type 1 EBNA-2 correlate with the greater induction of EBV LMP-1 and about 10 cell genes, including CXCR7. In chromatin immunoprecipitation assays, type 1 EBNA-2 is shown to associate more strongly with EBNA-2 binding sites near the LMP-1 and CXCR7 genes. Unbiased motif searching of the EBNA-2 binding regions of the differentially regulated cell genes identified an ETS-interferon regulatory factor composite element motif that closely corresponds to the sequences known to mediate EBNA-2 regulation of the LMP-1 promoter. It appears that the superior induction by type 1 EBNA-2 of the cell genes contributing to cell growth is due to their being regulated in a manner different from that for most EBNA-2-responsive genes and in a way similar to that for the LMP-1 gene. IMPORTANCE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.