The considerable growth in the science and application of pulmonary rehabilitation since 2006 adds further support for its efficacy in a wide range of individuals with chronic respiratory disease.
This document has been developed by an international committee and has been endorsed by both the ATS and the ERS. It places pulmonary rehabilitation within the concept of integrated care. The World Health Organization has defined integrated care as "a concept bringing together inputs, delivery, management and organization of services related to diagnosis, treatment, care, rehabilitation and health promotion" (1). Integration of services improves access, quality, user satisfaction, and efficiency of medical care. As such, pulmonary rehabilitation provides an opportunity to coordinate care and focus on the entire clinical course of an individual's disease.Building on previous statements (2, 3), this document presents recent scientific advances in our understanding of the multisystemic effects of chronic respiratory disease and how pulmonary rehabilitation addresses the resultant functional limitations. It was created as a comprehensive statement, using both a firm evidence-based approach and the clinical expertise of the writing committee. As such, it is complementary to two current documents on pulmonary rehabilitation: the American College of Chest Physicians and American Association of Cardiovascular and Pulmonary Rehabilitation (AACVPR) evidence-based guidelines (4), which formally grade the level of scientific evidence, and the AACVPR Guidelines for Pulmonary Rehabilitation Programs (5), which give practical recommendations.
Though exercise training is part of most pulmonary rehabilitation programs, whether there is a physiologic basis for increased exercise tolerance is unclear. We sought to determine whether patients with chronic obstructive pulmonary disease (COPD) are capable of obtaining a physiologic training effect, as manifested by a reduction in blood lactate and ventilation (VE) at a given level of exercise. We also sought to determine whether training work rate determines the size of the training effect. Nineteen participants with COPD of predominantly moderate severity in an inpatient rehabilitation program performed two cycle ergometer exercise tests at a low and a high work rate for 15 min or to tolerance and also an incremental exercise test to tolerance. Arterial blood was sampled for blood gas and lactate analyses. Identical tests were performed before and after 5-day-per-week cycle ergometer training for 8 wk either for 45 min/day at a high work rate (average, 71 W) or for a proportionally longer time at a low work rate (average, 30 W). Average FEV1 was 56 +/- 12% predicted and did not change with training. Peak exercise lactate (average, 6.5 mEq/L) was not correlated with FEV1. For the high work rate training group, identical work rates engendered less lactate (4.5 versus 7.2 mEq/L) and less VE (48 versus 55 L/min) after training; the low work rate training group had significantly less lactate and VE decrease (p less than 0.01). Further, endurance time for the high constant work rate increased 73% in the high work rate training group but only 9% in the low work rate training group. At identical work rates, VE decrease average 2.5 L/min per mEq/L decrease in lactate (r = 0.75). We conclude that most COPD subjects studied increased blood lactate at low work rates. Many of these patients were able to achieve a physiologic training effect. Though total work was the same, training at a high work rate was more effective than was training at a low work rate. The lower VE requirement to perform exercise was in proportion to the lower lactate level, but the VE decrease for a given decrease in lactate was smaller than that seen in normal subjects (7.2 L/min/mEq/L), apparently because patients with COPD fall to hyperventilate in response to lactic acidosis (PaCO2 does not drop). These findings provide a physiologic rationale for exercise training of patients with COPD.
The AHI is a powerful independent predictor of poor prognosis in clinically stable patients with CHF. The presence of an AHI >/=30/h adds prognostic information compared with other clinical, echocardiographic, and autonomic data and identifies patients at very high risk for subsequent cardiac death.
Chronic obstructive pulmonary disease (COPD) patients with chronic ventilatory failure (CVF) are more likely to develop exacerbations, which are an important determinant of health-related quality of life (HRQL). Long-term noninvasive positive-pressure ventilation (NPPV) has been proposed in addition to long-term oxygen therapy (LTOT) to treat CVF but little information is available on its effects on HRQL and resource consumption. Therefore, the current authors undertook a 2-yr multicentric, prospective, randomised, controlled trial to assess the effect of NPPVz LTOT on: 1) severity of hypercapnia; 2) use of healthcare resources, and 3) HRQL, in comparison with LTOT alone.One hundred and twenty-two stable hypercapnic COPD patients on LTOT for o6 months were consecutively enrolled. After inclusion and 1-month run-in, 90 patients were randomly assigned to NPPVzLTOT (n=43) or to LTOT alone (n=47). Arterial blood gases, hospital and intensive care unit (ICU) admissions, total hospital and ICU length of stay and HRQL were primary outcome measures; survival and drop-out rates, symptoms (dyspnoea and sleep quality) and exercise tolerance were secondary outcome measures. Follow-up was performed at 3-month intervals up to 2 yrs.Lung function, inspiratory muscle function, exercise tolerance and sleep quality score did not change over time in either group. By contrast the carbon dioxide tension in arterial blood on usual oxygen, resting dyspnoea and HRQL, as assessed by the Maugeri Foundation Respiratory Failure Questionnaire, changed differently over time in the two groups in favour of NPPVzLTOT. Hospital admissions were not different between groups during the follow-up. Nevertheless, overall hospital admissions showed a different trend to change in the NPPVzLTOT (decreasing by 45%) as compared with the LTOT group (increasing by 27%) when comparing the follow-up with the followback periods. ICU stay decreased over time by 75% and 20% in the NPPVzLTOT and LTOT groups, respectively. Survival was similar.Compared with long-term oxygen therapy alone, the addition of noninvasive positivepressure ventilation to long-term oxygen therapy in stable chronic obstructive pulmonary disease patients with chronic ventilatory failure: 1) slightly decreased the trend to carbon dioxide retention in patients receiving oxygen at home and 2) improved dyspnoea and health-related quality of life. The results of this study show some significant benefits with the use of nocturnal, home noninvasive positive-pressure ventilation in patients with chronic ventilatory failure due to advanced chronic obstructive pulmonary disease patients. Further work is required to evaluate the effect of noninvasive positive-pressure ventilation on reducing the frequency and severity of chronic obstructive pulmonary disease exacerbation. Eur Respir J 2002; 20: 529-538.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.