The Neoproterozoic Sete Lagoas Formation (ca 610 Ma) of the São Francisco Basin, Brazil, is a succession of siltstone, limestone and phosphorite. Phosphorite forms part of a previously unrecognized 150 to 200 m thick, unconformity bounded depositional sequence. Lithofacies stacking patterns indicate that deposition was punctuated by higher order fluctuations in base level that produced aggradational parasequences. These shallowing-upward cycles record the progradation of phosphate-rich intertidal flats over shallow subtidal deposits as accommodation filled. The presence of mudcracks, authigenic chert nodules, lack of coarse terrigenous clastics and the abundance of silt with fine, abraded quartz grains suggests accumulation along an arid coastline with significant aeolian input. Delivery of phosphorus adsorbed on aeolian Fe-(oxyhydr)oxide and clay is interpreted as having stimulated phosphogenesis in peritidal environments. Lithofacies associations indicate that windblown phosphorus promoted the establishment of cyanobacterial communities along the coast, which produced photosynthetic oxygen and the suboxic conditions necessary for the precipitation of authigenic carbonate fluorapatite. As in other Precambrian phosphatic systems, nearshore oxygen oases were a prerequisite for phosphorite accumulation because redox sensitive phosphogenic processes were pushed into the sediment to concentrate phosphorus. In more distal, anoxic environments phosphorite could not form because these biotic and abiotic processes were suspended in the water column, which cycled phosphorus in sea water rather than at the sediment-water interface. Such shallow-water phosphorite is unlike larger, younger Neoproterozoic-Phanerozoic phosphatic deposits inferred to have formed in deeper-upwelling related environments. The increasing size of phosphatic deposits through the latest Precambrian is interpreted as reflecting the progressive ventilation of the oceans during the Neoproterozoic Oxygenation Event, and resultant expansion of phosphogenic environments into distal settings. The widespread cycling of bioavailable phosphorus at the sea floor not only produced the first true phosphorite giants, but may have also been an important precondition for the evolution of multicellular animals.
The Santa Fé Ni-Co deposit is a major undeveloped lateritic deposit located in the Goiás State of Central Brazil. The deposit comprises two properties that together have indicated resources of 35.7 million tonnes (Mt), grading 1.14% Ni and 0.083% Co, and inferred resources of 104.3 Mt at 1.03% Ni and 0.054% Co. The laterite was derived from Late Cretaceous alkaline ultramafic lithologies that experienced an initial silicification from Eocene to Oligocene, followed by lateritization and partial reworking in Miocene-Pliocene. The deposit is characterized both by oxide- and phyllosilicate-dominated ore zones. In the former, Ni- and Co-bearing hematite and goethite dominate the supergene mineralogical assemblage, while ore-bearing Mn oxyhydroxides occur as minor components. In the phyllosilicate-dominated horizons the major Ni-carrying phase is chlorite. Multivariate statistical analyses (factor analysis and principal components analysis) conducted on the drill core assay database (bulk-rock chemical analyses) showed that significant differences exist between Ni and Co distributions. The Ni distribution is not controlled by any clear geochemical correlation. This is because the highest Ni concentrations have been measured in the ferruginous and in the ochre saprolite zones, where Ni-bearing minerals (chlorite and goethite) are mostly associated with reworked material and only in a limited way, with zones affected by in situ ferrugination. Cobalt has an atypical statistical distribution at Santa Fé if compared with other laterites, correlated not only with Mn but also with Cr in the majority of the laterite facies. From microchemical analyses on several potential Co-bearing minerals, it was found that the Co-Cr association is related to elevated Co contents in residual spinels, representing unweathered phases of the original parent rock now included in the laterite. This element distribution is atypical for Ni-Co laterite deposits, where Co is normally associated with Mn in supergene oxyhydroxides. In the case of the Santa Fé laterite, the Co concentration in spinels is likely related to magmatic and postmagmatic processes that affected the original parent rock before lateritization, specifically (1) orthomagmatic enrichment of Co in chromite, due to its high affinity to spinels in alkaline melts, and (2) trace elements (i.e., Co, Mn, Ni, and Zn) redistribution during the hydrothermal alteration of chromite into ferritchromite. The Santa Fé deposit represents a good example of how the prelateritic evolution of a parent rock strongly affects the efficiency of Co mobilization and enrichment during supergene alteration. Based on the interpretation of metallurgical test work, a fraction of total Co between 20 and 50% is locked in spinels.
The Morro dos Seis Lagos niobium deposit (2897.9 Mt at 2.81 wt.% Nb 2 O 5) is associated with laterites formed by the weathering of siderite carbonatite. This iron-rich lateritic profile (>100 m in thickness) is divided into six textural and compositional types, which from the top to the base of the sequence is: (1) pisolitic laterite, (2) fragmented laterite, (3) mottled laterite, (4) purple laterite, (5) manganiferous laterite, and (6) brown laterite. All the laterites are composed mainly of goethite (predominant in the lower and upper varieties) and hematite (predominant in the intermediate types, formed from goethite dehydroxylation). The upper laterites were reworked, resulting in goethite formation. In the manganiferous laterite (10 m thick), the manganese oxides (mainly hollandite, with associated cerianite) occur as veins or irregular masses, formed in a late event during the development of the lateritic profile, precipitated from a solution with higher oxidation potential than that for Fe oxides, closer to the water table. Siderite is the source for the Mn. The main Nb ore mineral is Nb-rich rutile (with 11.26-22.23 wt.% Nb 2 O 5), which occurs in all of the laterites and formed at expense of a former secondary pyrochlore, together with Ce-pyrochlore (last pyrochore before final breakdown), Nb-rich goethite and minor cerianite. The paragenesis results of lateralization have been extremely intense. Minor Nb-rich brookite formed from Nb-rich rutile occurs as broken spherules with an "oolitic" (or Liesegang ring structure). Nbrich rutile and Nb-rich brookite incorporate Nb following the [Fe 3+ + (Nb, Ta) for 2Ti] substitution and both contain up to 2 wt.% WO 3. The laterites have an average Nb 2 O 5 content of 2.91 wt.% and average TiO 2 5.00 wt.% in the upper parts of the sequence. Average CeO 2 concentration increases with increasing depth, from 0.12 wt.% in the pisolitic type to 3.50 wt.% in the brown laterite. HREE concentration is very low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.