An accurate intrinsic permeability measurement system has been designed and realized in order to quantify the inter-pore connectivity structure of tissue-engineering scaffolds by using a single (pressure) transducer. The proposed method uses a slow alternating airflow as a fluid medium and allows at the same time a simple and accurate measurement procedure. The intrinsic permeability is determined in the linear Darcy's region, and deviation from linearity due to inertial losses is also quantified. The structural parameters of a scaffold, such as effective porosity, tortuosity and effective length of cylindrical pores, are estimated using the classical Ergun's equation recently modified by Wu et al. From this relation, it is possible to achieve a well-defined range of data and associated uncertainties for characterizing the structure/architecture of tissue-engineering scaffolds. This quantitative analysis is of paramount importance in tissue engineering, where scaffold topological features are strongly related to their biological performance.
The spatial and temporal distribution of the temperature elevation caused by high-intensity therapeutic ultrasound (HITU) in a tissue-mimicking material (TMM) has been determined with magnetic resonance (MR) thermometry, infrared (IR) thermometry and a thermal test object with an integrated thin-film thermocouple at three different National Metrological Institutes (PTB/Germany, NPL/UK, INRIM/Italy). Results obtained from the different types of measurement are compared and some general aspects of the methods are discussed, particularly with regard to their suitability for the in vitro characterization of transducers for treatment planning.
In the field of noise control and monitoring, a new generation of small and low-cost microelectro-mechanical system (MEMS) microphones is nowadays widely adopted. MEMS microphones, after recognition as traceable measurement instruments, could open up promising measurements based on wireless sensor networks. Current standards do not apply specifically to digital microphones. In this work, a pressure calibration procedure by comparison is carried out for a digital MEMS microphone and a sensitivity parameter suitable for metrological purposes is proposed. Measurement procedure and results between 20 Hz and 20 kHz are presented along with uncertainty contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.