Potato late blight, caused by Phytophthora infestans, is a major disease worldwide that has a significant economic impact on potato crops, and remote sensing might help to detect the disease in early stages. This study aims to determine changes induced by potato late blight in two parameters of the red and red-edge spectral regions: the red-well point (RWP) and the red-edge point (REP) as a function of the number of days post-inoculation (DPI) at the leaf and canopy levels. The RWP or REP variations were modelled using linear or exponential regression models as a function of the DPI. A Support Vector Machine (SVM) algorithm was used to classify healthy and infected leaves or plants using either the RWP or REP wavelength as well as the reflectances at 668, 705, 717 and 740 nm. Higher variations in the RWP and REP wavelengths were observed for the infected leaves compared to healthy leaves. The linear and exponential models resulted in higher adjusted R2 for the infected case than for the healthy case. The SVM classifier applied to the reflectance of the red and red-edge bands of the Micasense® Dual-X camera was able to sort healthy and infected cases with both the leaf and canopy measurements, reaching an overall classification accuracy of 89.33% at 3 DPI when symptoms were visible for the first time with the leaf measurements and of 89.06% at 5 DPI, i.e., two days after the symptoms became apparent, with the canopy measurements. The study shows that RWP and REP at leaf and canopy levels allow detecting potato late blight, but these parameters are less efficient to sort healthy and infected leaves or plants than the reflectance at 668, 705, 717 and 740 nm. Future research should consider larger samples, other cultivars and the test of unmanned aerial vehicle (UAV) imagery for field-based detection.
Cucumber powdery mildew, which is caused by Podosphaera xanthii, is a major disease that has a significant economic impact in cucumber greenhouse production. It is necessary to develop a non-invasive fast detection system for that disease. Such a system will use multispectral imagery acquired at a close range with a camera attached to a mobile cart’s mechanic extension. This study evaluated three image registration methods applied to non-georeferenced multispectral images acquired at close range over greenhouse cucumber plants with a MicaSense® RedEdge camera. The detection of matching points was performed using Speeded-Up Robust Features (SURF), and outliers matching points were removed using the M-estimator Sample Consensus (MSAC) algorithm. Three geometric transformations (affine, similarity, and projective) were considered in the registration process. For each transformation, we mapped the matching points of the blue, green, red, and NIR band images into the red-edge band space and computed the root mean square error (RMSE in pixel) to estimate the accuracy of each image registration. Our results achieved an RMSE of less than 1 pixel with the similarity and affine transformations and of less than 2 pixels with the projective transformation, whatever the band image. We determined that the best image registration method corresponded to the affine transformation because the RMSE is less than 1 pixel and the RMSEs have a Gaussian distribution for all of the bands, but the blue band.
This study used close-range multispectral imagery over cucumber plants inside a commercial greenhouse to detect powdery mildew due to Podosphaera xanthii. It was collected using a MicaSense® RedEdge camera at 1.5 m over the top of the plant. Image registration was performed using Speeded-Up Robust Features (SURF) with an affine geometric transformation. The image background was removed using a binary mask created with the aligned NIR band of each image, and the illumination was corrected using Cheng et al.’s algorithm. Different features were computed, including RGB, image reflectance values, and several vegetation indices. For each feature, a fine Gaussian Support Vector Machines algorithm was trained and validated to classify healthy and infected pixels. The data set to train and validate the SVM was composed of 1000 healthy and 1000 infected pixels, split 70–30% into training and validation datasets, respectively. The overall validation accuracy was 89, 73, 82, 51, and 48%, respectively, for blue, green, red, red-edge, and NIR band image. With the RGB images, we obtained an overall validation accuracy of 89%, while the best vegetation index image was the PMVI-2 image which produced an overall accuracy of 81%. Using the five bands together, overall accuracy dropped from 99% in the training to 57% in the validation dataset. While the results of this work are promising, further research should be considered to increase the number of images to achieve better training and validation datasets.
This study aimed to understand the spectral changes induced by Podosphaera xanthii, the causal agent of powdery mildew, in cucumber leaves from the moment of inoculation until visible symptoms are apparent. A Principal Component Analysis (PCA) was applied to the spectra to assess the spectral separability between healthy and infected leaves. A spectral ratio between infected and healthy leaf spectra was used to determine the best wavelengths for detecting the disease. Additionally, the spectra were used to compute two spectral variables, i.e., the Red-Well Point (RWP) and the Red-Edge Inflexion Point (REP). A linear Support Vector Machine (SVM) classifier was applied to certain spectral features to assess how well these features can separate the infected leaves from the healthy ones. The PCA showed that a good separability could be achieved from 4 DPI. The best model to fit the RWP and REP wavelengths corresponded to a linear model. The linear model had a higher adjusted R2 for the infected leaves than for the healthy leaves. The SVM trained with five first principal components scores achieved an overall accuracy of 95% at 4 DPI, i.e., two days before the visible symptoms. With the RWP and REP parameters, the SVM accuracy increased as a function of the day of inoculation, reaching 89% and 86%, respectively, when symptoms were visible at 6 DPI. Further research must consider a higher number of samples and more temporal repetitions of the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.