This paper presents an exploratory agent-based model of a real time gross settlement (RTGS) payment system. Banks are represented as agents who exchange payment requests, which are then settled according to a set of simple rules. The model features the main elements of a real-life system, including a central bank acting as liquidity provider, and a simplified money market. A simulation exercise using synthetic data of BI-REL (the Italian RTGS) predicts the macroscopic impact of a disruptive event on the flow of interbank payments. In our reducedscale system, three hypothetical distinct phases emerge after the disruptive event: 1) a liquidity sink effect is generated and the participants' liquidity expectations turn out to be excessive; 2) an illusory thickening of the money market follows, along with increased payment delays; and, finally 3) defaulted obligations dramatically rise. The banks cannot staunch the losses accruing on defaults, even after they become fully aware of the critical event, and a scenario emerges in which it might be necessary for the central bank to step in as liquidity provider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.