A recent study has shown the reproducibility of time to exhaustion (time limit: tlim) at the lowest velocity that elicits the maximal oxygen consumption (vVO2 max). The same study found an inverse relationship between this time to exhaustion at vVO2 max and vVO2 max among 38 élite long-distance runners (Billat et al. 1994b). The purpose of the present study was to compare the time to exhaustion at the power output (or velocity) at VO2 max for different values of VO2 max, depending on the type of exercise and not only on the aerobic capacity. The time of exhaustion at vVO2 max (tlim) has been measured among 41 élite (national level) sportsmen: 9 cyclists, 9 kayak paddlers, 9 swimmers and 14 runners using specific ergometers. Velocity or power at VO2 max (vVO2 max) was determined by continuous incremental testing. This protocol had steps of 2 min and increments of 50 W, 30 W, 0.05 m s-1 and 2 km-1 for cyclists, kayak paddlers, swimmers and runners, respectively. One week later, tlim was determined under the same conditions. After a warm-up of 10 min at 60% of their vVO2 max, subjects were concluded (in less than 45 s) to their vVO2 max and then had to sustain it as long as possible until exhaustion. Mean values of vVO2 max and tlim were respectively equal to 419 +/- 49 W (tlim = 222 +/- 91 s), 239 +/- 56 W (tlim = 376 +/- 134 s), 1.46 +/- 0.09 m s-1 (tlim = 287 +/- 160 s) and 22.4 +/- 0.8 km h-1 (tlim = 321 +/- 84 s), for cyclists, kayak paddlers, swimmers and runners. Time to exhaustion at vVO2 max was only significantly different between cycling and kayaking (ANOVA test, p < 0.05). Otherwise, VO2 max (expressed in ml min-1 kg-1) was significantly different between all sports except between cycling and running (p < 0.05). In this study, time to exhaustion at vVO2 max was also inversely related to VO2 max for the entire group of élite sportsmen (r = -0.320, p < 0.05, n = 41). The inverse relationship between VO2 max and tlim at vVO2 max has to be explained, it seems that tlim depends on VO2 max regardless of the type of exercise undertaken.
Analyzing physical fitness data of athletes competing in the last 4 winter Paralympic Games, normative values are provided. The specific components that are highly developed in the BP are considered relevant for successful performance.
Purpose To test the hypothesis that aerobic fitness is inversely related to the risk of atherosclerotic cardiovascular disease (ACVD) in athletes with locomotor impairments deriving from health conditions, such as spinal cord injury (SCI), lower limb amputation, cerebral palsy, poliomyelitis, and other health conditions different from the previous ones. Methods A total of 68 male athletes who competed in either summer or winter Paralympic games were divided in two health conditions groups (35 with SCI, mean age 37.2 ± 8.0 years, and 33 with different health conditions, mean age 37.8 ± 9.9 years) and in four sport type groups (skill, power, intermittent—mixed metabolism—and endurance). They were evaluated through anthropometric and blood pressure measurements, laboratory blood tests, and graded cardiopulmonary maximal arm cranking exercise test, with oxygen uptake peak (VO2peak) measurement. Cardiovascular risk profile was assessed in each athlete. Results The prevalence of ACVD-risk factors in the overall population was 20.6% for hypertension; 47% and 55.9% for high values of total and LDL cholesterol, respectively; 22.1% for reduce glucose tolerance; and 8.8% for obesity. No difference was found between athletes with and without SCI, while the prevalence of obesity was significantly higher in those practicing skill sports (22.7%, p = 0.035), which was the sport type group with Paralympic athletes with the lowest VO2peak (22.5 ± 5.70 ml kg−1 min−1). VO2peak was lower in athletes with SCI than those with different health conditions (28.6 ± 10.0 vs 33.6 ± 8.9 ml kg−1 min−1p = 0.03), and in those with 3–4 risk factors (19.09 ± 5.34 ml kg−1 min−1) than those with 2 risk factors (27.1 ± 5.50 ml kg−1 min−1), 1 risk factor (31.6 ± 8.55 ml kg−1 min−1), or none (36.4 ± 8.76 ml kg−1 min−1) (p < 0.001). Conclusions The present study suggests that having higher VO2peak seems to offer greater protection against ACVD in individuals with a locomotor impairment. Prescribing physical exercise at an intensity similar to that of endurance and intermittent sports should become a fundamental tool to promote health among people with a locomotor impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.