Iodine reagents have been identified as economically and ecologically benign alternatives to transition metals, although their application as molecular catalysts in challenging C-H oxidation reactions has remained elusive. An attractive iodine oxidation catalysis is now shown to promote the convenient conversion of carbon-hydrogen bonds into carbon-nitrogen bonds with unprecedented complete selectivity. The reaction proceeds by two interlocked catalytic cycles comprising a radical chain reaction, which is initiated by visible light as energy source. This unorthodox synthetic strategy for the direct oxidative amination of alkyl groups has no biosynthetic precedence and provides an efficient and straightforward access to a general class of saturated nitrogenated heterocycles.
Molecular structures of the most prominent chiral non‐racemic hypervalent iodine(III) reagents to date have been elucidated for the first time. The formation of a chirally induced supramolecular scaffold based on a selective hydrogen‐bonding arrangement provides an explanation for the consistently high asymmetric induction with these reagents. As an exploratory example, their scope as chiral catalysts was extended to the enantioselective dioxygenation of alkenes. A series of terminal styrenes are converted into the corresponding vicinal diacetoxylation products under mild conditions and provide the proof of principle for a truly intermolecular asymmetric alkene oxidation under iodine(I/III) catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.