A new notosuchian crocodyliform from the Late Cretaceous Bauru Group found in the southeastern State of São Paulo (Brazil) is described here. The new taxon, Caipirasuchus stenognathus, is referred as a new species of the recently erected genus Caipirasuchus within the clade Sphagesauridae based on a phylogenetic analysis of basal mesoeucrocodylians. Caipirasuchus stenognathus is represented by an almost complete skull and lower jaw that has autapomorphic characters that distinguish it from other species of Sphagesauridae. These autapomorphies include: maxilla forming part of the orbital margin (absence of lacrimal-jugal contact), nasal with smooth depressions on the posterior region close to the contact with the maxilla and lacrimal, postorbital with posterior palpebral facet that extends posteriorly underneath the ear-flap groove, and a distinct anterior process of the medial flange of the retroarticular process. Additionally, the new taxon lacks autapomorphic features described in other sphagesaurids. The phylogenetic analysis results in a monophyletic genus Caipirasuchus, that is the sister group of a clade fomed by Sphagesaurus huenei, Caryonosuchus pricei, and Armadillosuchus arrudai. Sphagesaurids also include a basal clade formed by Adamantinasuchus navae and Yacarerani boliviensis. Other notosuchian taxa, such as Mariliasuchus amarali, Labidiosuchus amicum, Notosuchus terrestris, and Morrinhosuchus luziae are successive sister taxa of Sphagesauridae, forming a clade of advanced notosuchians that are restricted to the Late Cretaceous of South America. These results contrast with most previous phylogenetic hypotheses of the group that depicted some members of Sphagesauridae as more closely related to baurusuchids, or found Asian (e.g., Chimaerasuchus) or African (Malawisuchus, Pakasuchus) forms nested within advanced notosuchians that are, according to our analysis, endemic of the Late Cretaceous of South America.
Surface roughness is an important geomorphological variable which has been used in the earth and planetary sciences to infer material properties, current/past processes and the time elapsed since formation. No single definition exists, however within the context of geomorphometry we use surface roughness as a expression of the variability of a topographic surface at a given scale, where the scale of analysis is determined by the size of the landforms or geomorphic features of interest. Six techniques for the calculation of surface roughness were selected for an assessment of the parameter's behaviour at different spatial scales and dataset resolutions. Area ratio operated independently of scale, providing consistent results across spatial resolutions. Vector dispersion produced results with increasing roughness and homogenisation of terrain at coarser resolutions and larger window sizes. Standard deviation of residual topography tends to highlight local features and doesn't detect regional relief. Standard deviation of elevation correctly identified breaks-of-slope and was good at detecting regional relief. Standard deviation of slope (SDslope) also correctly identified smooth sloping areas and breaks-of-slope, providing the best results for geomorphological analysis. Standard deviation of profile curvature identified the breaks-of-slope, although not as strongly as SDslope and it is very sensitive to noise and spurious data. In general, SDslope offered good performance at a variety of scales, whilst the simplicity of calculation is perhaps its single greatest benefit.
Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.