Huntington's disease (HD) is caused by CAG repeat expansion in the huntingtin gene. The expanded polyglutamine (polyQ) repeat of the encoded protein leads to protein misfolding and aggregation, resulting in increased neuronal cell death. DNAJ co-chaperones play a crucial role in transferring misfolded/unfolded proteins to HSP70 chaperones, which play an essential role for protein folding. Here, we investigated the effect of knock out (KO) of three individual DNAJ genes in HEK293 cells expressing polyglutamine74exon1 huntingtin (polyQ74htt). Flourescence microscopy analysis revealed that KO of DNAJB6 resulted in a 5-fold increase in polyQ74htt aggregation and that DNAJA1 KO resulted in a 4-fold decrease of polyQ74htt aggregation. KO of DNAJB1 did not change the propensity of polyQ74htt to aggregate in cells. These findings where confirmed both by fluorescence microscopy analysis and filter trap assay (FTA). DNAJB6 KO cells displayed an increased rate of cell death as assessed by trypan blue exclusion and propidium iodide (PI) uptake assays. These results demonstrate that the DNAJ proteins DNAJA1 and DNAJB6 can modulate polyQ aggregation in opposite manners, and thus that fine-tuning the cellular levels of DNAJ proteins is critical for suppression of polyQ aggregation and cell survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.