Luminescent lanthanide metal−organic frameworks (Ln-MOFs) have been shown to exhibit relevant optical properties of interest for practical applications, though their implementation still remains a challenge. To be suitable for practical applications, Ln-MOFs must be not only water stable but also printable, easy to prepare, and produced in high yields. Herein, we design and synthesize a series of mCB-Eu y Tb 1−y (y = 0−1) MOFs using a highly hydrophobic ligand mCBL1: 1,7-di(4-carboxyphenyl)-1,7-dicarba-closododecaborane. The new materials are stable in water and at high temperature. Tunable emission from green to red, energy transfer (ET) from Tb 3+ to Eu 3+ , and time-dependent emission of the series of mixed-metal mCB-Eu y Tb 1−y MOFs are reported. An outstanding increase in the quantum yield (QY) of 239% of mCB-Eu (20.5%) in the mixed mCB-Eu 0.1 Tb 0.9 (69.2%) is achieved, along with an increased and tunable lifetime luminescence (from about 0.5 to 10 000 μs), all of these promoted by a highly effective ET process. The observed time-dependent emission (and color), in addition to the high QY, provides a simple method for designing high-security anticounterfeiting materials. We report a convenient method to prepare mixed-metal Eu/ Tb coordination polymers (CPs) that are printable from water inks for potential applications, among which anticounterfeiting and bar-coding have been selected as a proof-of-concept.
In this work a novel strategy is introduced to achieve thermally switchable emission from photon upconversion (UC) systems based on organic dyes. When these molecules were dissolved at low concentrations in phase-change media, a reversible, sharp, and nearly complete interconversion from blue upconverted emission to red luminescence was observed around the solid-to-liquid transition of the system. This result was rationalized in terms of dye aggregation, which selectively occurs in the solid state and dramatically enhances the inter-chromophoric energy transfer processes leading to UC. Notably, this behavior is extendable to different media and dyes, which allows an easy tuning of the switching temperature and emission colors. In addition, with proper selection of the phase-change medium, our strategy permits facile preparation of solid molecular materials showing photon UC at room temperature and even at sub-micromolar dye concentrations.
A novel strategy to achieve thermally switchable photochromism in solid materials is reported, which relies on the preparation of polymeric core-shell capsules containing solutions of photochromic dyes in acidic phase-change materials. Upon changing the phase (solid or liquid) of the encapsulated medium, one of the two photochromic states of the system is selectively stabilized on demand, allowing for reversible interconversion between direct and reverse photochromism when thermally scanning through the melting temperature of the phase-change material. This strategy, which does not require the addition of external agents or chemical modification of the dyes, proved to be general for different spiropyran photochromes and to be applicable to the fabrication of a variety of functional materials by simply embedding the capsules obtained into a solid matrix of choice.
The increasing interest towards photochromic films and their practical applications are driving researchers to the continuous design and synthesis of novel organic photochromic dyes with optimized performances in polymeric matrices....
Herein we report on a novel, straightforward and universal strategy to achieve solid materials with highly tunable reverse photochromism. This was accomplished by means of commercially available spiropyran dyes, which can produce different types of stable merocyanine states (i.e. non-protonated and protonated forms) displaying distinct reverse photochromic properties (i.e. colours and colouration rates). To finely control the concentration ratio of these species and, as such, tailor the optical performance of the photochromes, we exploited their differential interaction with surrounding media of distinctive nature (i.e. non-volatile protic and aprotic polar solvents). In this way, solutions displaying different photochromic responses were prepared for individual spiropyrans without requiring chemical derivatization, an approach that can be generalized to other spiro dyes with distinct acid-base properties. To transfer this behaviour to the solid state, core-shell capsules of these solutions were prepared, which were then used as ink materials for the fabrication of flexible polymeric films with unprecedented tunability of their photochromic properties that can be employed as rewritable multicoloured devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.