The coherent transfer of excitations between different locations of a quantum many-body system is of primary importance in many research areas, from transport properties in spintronics and atomtronics to quantum state transfer in quantum information processing. We address the transfer of n > 1 bosonic and fermionic excitations between the edges of a one-dimensional chain modeled by a quadratic hopping Hamiltonian, where the block edges, embodying the sender and the receiver sites, are weakly coupled to the quantum wire. We find that perturbatively perfect coherent transfer is attainable in the weak-coupling limit, for both bosons and fermions, only for certain modular arithmetic equivalence classes of the wire's length. Finally we apply our findings to the transport of spins and the charging of a many-body quantum battery.
We propose a platform for robust and tunable non-reciprocal phonon transport based on arrays of optomechanical microtoroids. In our approach, time-reversal symmetry is broken by the interplay of photonic spin-orbit coupling, engineered using a state-of-the-art geometrical approach, and the optomechanical interaction. We demonstrate the topologically protected nature of this system by investigating its robustness to imperfections. This type of system could find application in phonon-based information storage and signal processing devices.
We investigate the transfer of genuine multipartite entanglement across a spin-1 2 chain with nearest-neighbor XX-type interaction. We focus on the perturbative regime, where a block of spins is weakly coupled at each edge of a quantum wire, embodying the role of a multiqubit sender and receiver, respectively. We find that high-quality multipartite entanglement transfer is achieved at the same time that three excitations are transferred to the opposite edge of the chain. Moreover, we find that both a finite concurrence and tripartite negativity is attained at much shorter time, making GHZ-distillation protocols feasible. Finally, we investigate the robustness of our protocol with respect to non-perturbative couplings and increasing lengths of the quantum wire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.