Adaptation to new environments can start from new mutations or from standing variation already present in natural populations. Whether admixture constrains or facilitates adaptation from standing variation is largely unknown, especially in ecological keystone or foundation species. We examined patterns of neutral and adaptive population divergence in Populus tremula L., a widespread forest tree, using mapped molecular genetic markers. We detected the genetic signature of postglacial admixture between a Western and an Eastern lineage of P. tremula in Scandinavia, an area suspected to represent a zone of postglacial contact for many species of animals and plants. Stringent divergence‐based neutrality tests provided clear indications for locally varying selection at the European scale. Six of 12 polymorphisms under selection were located less than 1 kb away from the nearest gene predicted by the Populus trichocarpa genome sequence. Few of these loci exhibited a signature of ‘selective sweeps’ in diversity‐based tests, which is to be expected if adaptation occurs primarily from standing variation. In Scandinavia, admixture explained genomic patterns of ancestry and the nature of clinal variation and strength of selection for bud set, a phenological trait of great adaptive significance in temperate trees, measured in a common garden trial. Our data provide a hitherto missing direct link between past range shifts because of climatic oscillations, and levels of standing variation currently available for selection and adaptation in a terrestrial foundation species.
Summary 1.Given the enormous quantitative pollen requirements of bees and their high efficiency in pollen removal, flowers should balance the need to attract bees for pollination on the one hand and to restrict pollen loss to bees on the other hand. Although various morphological flower traits have been identified that reduce excessive pollen losses to bees, the question of whether pollen might also be chemically protected remains largely unexplored. 2. In this study we compared the larval performance of the two very closely related and highly pollen generalist solitary bee species Osmia bicornis and Osmia cornuta on four different pollen diets. 3. Despite their very large pollen diet breadth, the two bee species showed striking differences in their ability to develop on pollen of the same plant species. Osmia bicornis developed well on Ranunculus pollen but failed to do so on Echium pollen, whereas the reverse held true for O. cornuta with the exception of two larvae grown on Ranunculus pollen that developed into dwarfish adults. Both bee species performed well on Sinapis pollen, while neither of the two species managed to develop on Tanacetum pollen. 4. The observed differences in larval survival of these two Osmia species when reared on the same pollen diet as well as their failure to develop on Tanacetum pollen clearly demonstrate that bees require physiological adaptations to cope with the unfavourable chemical properties of certain pollen. 5. Our results show a remarkable analogy of bee-flower relationships with herbivore-plant interactions and possibly indicate that the pollen of certain plant taxa might be chemically protected.
To trace the evolution of host-plant choice in bees of the genus Chelostoma (Megachilidae), we assessed the host plants of 35 Palearctic, North American and Indomalayan species by microscopically analyzing the pollen loads of 634 females and reconstructed their phylogenetic history based on four genes and a morphological dataset, applying both parsimony and Bayesian methods. All species except two were found to be strict pollen specialists at the level of plant family or genus. These oligolectic species together exploit the flowers of eight different plant orders that are distributed among all major angiosperm lineages. Based on ancestral state reconstruction, we found that oligolecty is the ancestral state in Chelostoma and that the two pollen generalists evolved from oligolectic ancestors. The distinct pattern of host broadening in these two polylectic species, the highly conserved floral specializations within the different clades, the exploitation of unrelated hosts with a striking floral similarity as well as a recent report on larval performance on nonhost pollen in two Chelostoma species clearly suggest that floral host choice is physiologically or neurologically constrained in bees of the genus Chelostoma. Based on this finding, we propose a new hypothesis on the evolution of host range in bees.K E Y W O R D S : Ancestral state reconstruction, evolutionary constraint, oligolecty, phylogeny, pollination, supermatrix.
Within the genus Osmia, the three subgenera Osmia, Monosmia, and Orientosmia form a closely-related group of predominantly pollen generalist ('polylectic') mason bees. Despite the great scientific and economic interest in several species of this clade, which are promoted commercially for orchard pollination, their phylogenetic relationships remain poorly understood. We inferred the phylogeny of 21 Osmia species belonging to this clade by applying Bayesian and maximum likelihood methods based on five genes and morphology. Because our results revealed paraphyly of the largest subgenus (Osmia s.s.), we synonymized Monosmia and Orientosmia under Osmia s.s. Microscopical analysis of female pollen loads revealed that five species are specialized ('oligolectic') on Fabaceae or Boraginaceae, whereas the remaining species are polylectic, harvesting pollen from up to 19 plant families. Polylecty appears to be the ancestral state, with oligolectic lineages having evolved twice independently. Among the polylectic species, several intriguing patterns of host plant use were found, suggesting that host plant choice of these bees is constrained to different degrees and governed by flower morphology, pollen chemistry or nectar availability, thus supporting previous findings on predominantly oligolectic clades of bees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.