The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphorylation of Sam68 by Fyn inverted this effect and favored the Bcl-x(L) splice site selection. A point mutation in the RNA-binding domain of Sam68 influenced its splicing activity and subnuclear localization. Moreover, coexpression of ASF/SF2 with Sam68, or fusion with an RS domain, counteracted Sam68 splicing activity toward Bcl-x. Finally, Sam68 interacted with heterogenous nuclear RNP (hnRNP) A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated Bcl-x(s) splicing. Our results indicate that Sam68 plays a role in the regulation of Bcl-x alternative splicing and that tyrosine phosphorylation of Sam68 by Src-like kinases can switch its role from proapoptotic to antiapoptotic in live cells.
A cAMP-specific phosphodiesterase (PDE4D3) is activated in rat thyroid cells by TSH through a cAMP-dependent phosphorylation (Sette, C., Iona, S., and Conti, M.(1994) J. Biol. Chem. 269, 9245-9252). This short term activation may be involved in the termination of the hormonal stimulation and/or in the induction of desensitization. Here, we have further characterized the protein kinase A (PKA)-dependent phosphorylation of this PDE4D3 variant and identified the phosphorylation site involved in the PDE activation. The PKA-dependent incorporation of phosphate in the partially purified, recombinant rat PDE4D3 followed a time course similar to that of activation. Half-maximal activation of the enzyme was obtained with 0.6 microM ATP and 30 nM of the catalytic subunit of PKA. Phosphorylation altered the Vmax of the PDE without affecting the Km for cAMP. Phosphorylation also modified the Mg2+ requirements and the pattern of inhibition by rolipram. Cyanogen bromide cleavage of the 32P-labeled rat PDE4D3 yielded two or three major phosphopeptide bands, providing a first indication that the enzyme may be phosphorylated at multiple sites in a cell-free system. Site-directed mutagenesis was performed on the serine residues present at the amino terminus of this PDE in the context of preferred motifs for PKA phosphorylation. The PKA-dependent incorporation of 32P was reduced to the largest extent in mutants with both Ser13 --> Ala and Ser54 --> Ala substitutions, confirming the presence of more than one phosphorylation site in rat PDE4D3. While substitution of serine 13 with alanine did not affect the activation by PKA, substitution of Ser54 completely suppressed the kinase activation. Similar conclusions were reached with wild type and mutated PDE4D3 proteins expressed in MA-10 cells, where the endogenous PKA was activated by dibutyryl cAMP. Again, the PDE with the Ser54 --> Ala substitution could not be activated by the endogenous PKA in the intact cell. These findings support the hypothesis that the PDE4D3 variant contains a regulatory domain target for phosphorylation at the amino terminus of the protein and that Ser54 in this domain plays a crucial role in activation.
Oocyte maturation, fertilization, and early embryonic development occur in the absence of gene transcription. Therefore, it is critical to understand at a global level the post-transcriptional events that are driving these transitions. Here we used a systems approach by combining polysome mRNA profiling and bioinformatics to identify RNA-binding motifs in mRNAs that either enter or exit the polysome pool during mouse oocyte maturation. Association of mRNA with the polysomes correlates with active translation. Using this strategy, we identified highly specific patterns of mRNA recruitment to the polysomes that are synchronized with the cell cycle. A large number of the mRNAs recovered with translating ribosomes contain motifs for the RNA-binding proteins DAZL (deleted in azoospermia-like) and CPEB (cytoplasmic polyadenylation element-binding protein). Although a Dazl role in early germ cell development is well established, no function has been described during oocyte-to-embryo transition. We demonstrate that CPEB1 regulates Dazl post-transcriptionally, and that DAZL is essential for meiotic maturation and embryonic cleavage. In the absence of DAZL synthesis, the meiotic spindle fails to form due to disorganization of meiotic microtubules. Therefore, Cpeb1 and Dazl function in a progressive, self-reinforcing pathway to promote oocyte maturation and early embryonic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.