EH domain-containing 2 (EHD2) specifically and stably associates with caveolae at the plasma membrane and interacts with pacsin2 and cavin1. A loop in the nucleotide-binding domain, together with ATP binding, is required for caveolar localization. EHD2 stabilizes caveolae at the surface to control their dynamics.
The dynamin-related Eps15-homology domain-containing protein 2 (EHD2) is a membrane remodeling ATPase that regulates the dynamics of caveolae. Here, we established an electron paramagnetic resonance (EPR) approach to characterize structural features of membrane-bound EHD2. We show that residues at the tip of the helical domain can insert into the membrane and may create membrane curvature by a wedging mechanism. Using EPR and X-ray crystallography, we found that the N-terminus is folded into a hydrophobic pocket of the GTPase domain in solution and can be released into the membrane. Cryo electron microscopy demonstrated that the N-terminus is not essential for oligomerization of EHD2 into a membrane-anchored scaffold. Instead, we found a function of the N-terminus in regulating targeting and stable association of EHD2 to caveolae. Our data uncover an unexpected, membrane-induced regulatory switch in EHD2 and demonstrate the versatility of EPR to study structure and function of dynamin superfamily proteins.
Eps15 (epidermal growth factor receptor pathway substrate 15)-homology domain containing proteins (EHDs) comprise a family of dynamin-related mechano-chemical ATPases involved in cellular membrane trafficking. Previous studies have revealed the structure of the EHD2 dimer, but the molecular mechanisms of membrane recruitment and assembly have remained obscure. Here, we determined the crystal structure of an amino-terminally truncated EHD4 dimer. Compared with the EHD2 structure, the helical domains are 50°r otated relative to the GTPase domain. Using electron paramagnetic spin resonance (EPR), we show that this rotation aligns the two membrane-binding regions in the helical domain toward the lipid bilayer, allowing membrane interaction. A loop rearrangement in GTPase domain creates a new interface for oligomer formation. Our results suggest that the EHD4 structure represents the active EHD conformation, whereas the EHD2 structure is autoinhibited, and reveal a complex series of domain rearrangements accompanying activation. A comparison with other peripheral membrane proteins elucidates common and specific features of this activation mechanism.dynamin superfamily | endocytic pathways | protein structure | membrane remodeling | autoinhibition
PACSIN2, a membrane-sculpting BAR domain protein, localizes to caveolae. Here, we found that protein kinase C (PKC) phosphorylates PACSIN2 at serine 313, thereby decreasing its membrane binding and tubulation capacities. Concomitantly, phosphorylation decreased the time span for which caveolae could be tracked at the plasma membrane (the 'tracking duration'). Analyses of the phospho-mimetic S313E mutant suggested that PACSIN2 phosphorylation was sufficient to reduce caveolartracking durations. Both hypotonic treatment and isotonic druginduced PKC activation increased PACSIN2 phosphorylation at serine 313 and shortened caveolar-tracking durations. Caveolartracking durations were also reduced upon the expression of other membrane-binding-deficient PACSIN2 mutants or upon RNA interference (RNAi)-mediated PACSIN2 depletion, pointing to a role for PACSIN2 levels in modulating the lifetime of caveolae. Interestingly, the decrease in membrane-bound PACSIN2 was inversely correlated with the recruitment and activity of dynamin 2, a GTPase that mediates membrane scission. Furthermore, expression of EHD2, which stabilizes caveolae and binds to PACSIN2, restored the tracking durations of cells with reduced PACSIN2 levels. These findings suggest that the PACSIN2 phosphorylation decreases its membrane-binding activity, thereby decreasing its stabilizing effect on caveolae and triggering dynaminmediated removal of caveolae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.