We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the 'universe view' and the 'multiverse view'. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the universe of sets, then we discuss the Zermelian view, featuring a 'vertical' multiverse, and give special attention to this multiverse conception in light of the hyperuniverse programme introduced in Arrigoni and Friedman (Bull Symb Logic 19(1):77-96, 2013). We argue that the distinctive feature of the multiverse conception chosen for the hyperuniverse programme is its utility for finding new candidates for axioms of set theory.
In the contemporary philosophy of set theory, discussion of new axioms that purport to resolve independence necessitates an explanation of how they come to be justified. Ordinarily, justification is divided into two broad kinds: intrinsic justification relates to how ‘intuitively plausible’ an axiom is, whereas extrinsic justification supports an axiom by identifying certain ‘desirable’ consequences. This paper puts pressure on how this distinction is formulated and construed. In particular, we argue that the distinction as often presented is neither well-demarcated nor sufficiently precise. Instead, we suggest that the process of justification in set theory should not be thought of as neatly divisible in this way, but should rather be understood as a conceptually indivisible notion linked to the goal of explanation.
In the contemporary philosophy of set theory, discussion of new axiomsthat purport to resolve independence necessitates an explanation of howthey come to bejustified. Ordinarily, justification is divided into two broadkinds:intrinsicjustification relates to how ‘intuitively plausible’ an axiomis, whereasextrinsicjustification supports an axiom by identifying certain‘desirable’ consequences. This paper puts pressure on how this distinctionis formulated and construed. In particular, we argue that the distinction asoften presented is neitherwell-demarcatednor sufficientlyprecise. Instead, wesuggest that the process of justification in set theory should not be thoughtof as neatly divisible in this way, but should rather be understood as a con-ceptually indivisible notion linked to the goal ofexplanation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.