SUMMARY The global emergence of multidrug-resistant gram-negative bacilli has spurred a renewed interest in polymyxins. Once discarded due to concerns regarding nephrotoxicity and neurotoxicity, polymyxins now hold an important role in the antibiotic armamentarium. However, more reliable information is needed to determine the optimal dosing of these agents. Also, unanswered questions regarding in vitro testing remain, including questions regarding the reliability of automated systems and the establishment of appropriate breakpoints for defining susceptibility. Most contemporary clinical studies examining the use of these agents have involved patients with infections due to multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains. It has been reassuring that polymyxin therapy for resistant bacteria has resulted in clinical responses and toxicity rates similar to those for carbapenem therapy for susceptible isolates. While most surveillance studies demonstrated high rates of susceptibility, several reports noted the emergence of polymyxin-resistant nosocomial pathogens. Polymyxins have assumed an important antibiotic niche for therapy for hospital-acquired infections; further studies defining the optimal use of these agents will likely extend the duration of their clinical usefulness.
Acinetobacter baumannii strains resistant to all -lactams, aminoglycosides, and fluoroquinolones have emerged in many medical centers. Potential mechanisms contributing to antimicrobial resistance were investigated in 40 clinical isolates endemic to New York City. The isolates were examined for the presence of various -lactamases, aminoglycoside-modifying enzymes, and mutations in gyrA and parC. Expression of the genes encoding the -lactamase AmpC, the efflux systems AdeABC and AbeM, and the OmpA-like porin was also examined by real-time reverse transcription-PCR. No VIM, IMP, KPC, OXA-23-type, OXA-24-type, or OXA-58 -lactamases were detected, although several isolates had acquired bla SHV-5 . Most cephalosporin-resistant isolates had increased levels of expression of ampC and/or had acquired bla SHV-5 ; however, isolates without these features still had reduced susceptibility to cefepime that was mediated by the AdeABC efflux system. Although most isolates with ISAba1 upstream of the bla OXA-51 -like carbapenemase gene were resistant to meropenem, several remained susceptible to imipenem. The presence of aminoglycoside-modifying enzymes and gyrase mutations accounted for aminoglycoside and fluoroquinolone resistance, respectively. The increased expression of adeABC was not an important contributor to aminoglycoside or fluoroquinolone resistance but did correlate with reduced susceptibility to tigecycline. The expression of abeM and ompA and phenotypic changes in OmpA did not correlate with antimicrobial resistance. A. baumannii has become a well-equipped nosocomial pathogen; defining the relative contribution of these and other mechanisms of antimicrobial resistance will require further investigation.
BackgroundNewly diagnosed HIV-positive individuals are 35 to 100-fold more susceptible to Streptococcus pneumoniae infection compared to non-infected individuals. Therefore, the 23-valent pneumococcal polysaccharide vaccine (PPV23) has previously been recommended, though efficacy and effectiveness of vaccination remains controversial. Early severe B cell dysfunction is a central feature of HIV infection. The specific nature of the immune cells involved in the production of protective antigen-specific antibodies in HIV-positive individuals remains to be elucidated.ObjectivesEvaluate the antibody and antigen-specific B cell response to the 23-valent pneumococcal polysaccharide vaccine in newly diagnosed HIV-positive patients. Moreover, determine if newly diagnosed patients with CD4<200 cells/μl benefit from 6–12 months of HAART, allowing partial viral suppression and immune reconstitution, prior to immunization.MethodsNewly diagnosed HIV-positive patients with CD4>200 cells/μl and CD4<200 cells/μl were immunized with PPV23. Patients with CD4<200 cells/μl received either immediate or delayed immunization following 6–12 months of HAART. Antibody responses, opsonophagocytic activity and phenotypic analysis of pneumococcal polysaccharide-specific B cells were studied.ResultsNewly diagnosed HIV-positive patients demonstrated CD4-dependent increases in antibody and opsonophagocytic titers thought to be commensurate with protection. Functional opsonophagocytic titers of patients with CD4<200 cells/μl immunized immediately compared to patients with CD4<200 cells/μl receiving HAART for 6–12 months were not significantly different. Pneumococcal polysaccharide-specific B cells were distributed evenly between IgM memory and switched memory B cells for all groups, but IgM memory B cells were significantly lower than in HIV-negative individuals.ConclusionsDespite CD4-dependent pneumococcal polysaccharide-specific deficiencies in newly diagnosed HIV-positive patients, vaccination was beneficial based on opsonophagocytic titers for all newly diagnosed HIV-positive groups. In HIV-positive patients with CD4<200 cells/μl, 6–12 months of HAART did not improve opsonophagocytic titers or antibody concentrations. Based on these findings, immunization with the 23-valent pneumococcal polysaccharide vaccine should not be delayed in newly diagnosed HIV-positive patients with CD4<200 cells/μl.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.