The present paper describes a series of considerations for the occurrence of capillary boundaries in flat micro heat pipes (flat MHPs) and the conditions required for their stable operation in relation to the working circumstances and to the type of liquids inside the pipes. Particularities of heat transfer in a flat MHP are analyzed for situations of either excessive or deficient working liquid. Depending on the physical properties of the working liquids (acetone, methanol and distilled water), the maximum rate of heat flow that can be applied to a flat MHP is determined analytically. The calculus is made with the assumption that constant vaporization of the liquid is ensured in the flat MHP’s evaporator, with no overheating. The considered analytical models allow for the evaluation of the liquid film thickness and the mass flow corresponding to the vaporization region. The temperature difference between the inner and outer walls of a flat MHP is found in the case of a transient regime and a variable thermal flow is applied in the evaporation region. The interior of flat MHPs was modeled in MATLAB using an FTCS (Forward-Time Central-Space) method, which is a finite difference method used for numerically solving the heat equation.
Flat mini heat pipes (FMHPs) are often used in cooling systems for various power electronic components, as they rapidly dissipate high heat flux densities. The main objective of the present work is to experimentally investigate whether differences in the rate of vapor formation occur on an internal structure containing trapezoidal microchannels and porous sintered copper powder material. Several parameters, such as hydraulic diameter and fluid velocity through the material, as a function of the internal structure porosity, were determined by calculation for a steady state regime. Reynolds number was determined as a function of porosity, according to Darcy’s law, and the Nusselt number was calculated. Since the flow is Darcy-type through the porous medium inside the FMHP, the Darcy friction factor was calculated using five methods: Colebrook, Darcy–Weisbach, Swamee–Jain, Blasius, and Haaland. After experimental tests, it was found that when the porous and trapezoidal microchannel layers are wetted at the same time, the vaporization progresses at a faster rate in the porous material, and the duration of the process is shorter. This recommends the use of such an internal structure in FMHPs since the manufacturing technology is simpler, the materials are cheaper, and the heat flux transport capacity is higher.
An analysis of the R134a (tetrafluoroetane) coolant’s non-stationary behavior in rectangular microchannels was conducted with the help of a newly proposed miniature refrigerating machine of our own design and construction. The experimental device incorporated, on the same plate, a condenser, a lamination tube and a vaporizer, all of which integrated rectangular microchannels. The size of the rectangular microchannels was determined by laser profilometry. R-134a coolant vapors were pressurized using a small ASPEN rotary compressor. Using the variable soft spheres (VSS) model, the mean free path, Knudsen and Reynolds numbers, as well as the dimensionless velocity profile can be assessed analytically. In order to determine the average dimensionless temperature drop in the vaporizer’s rectangular microchannels, in non-stationary regime, an analytical solution for incompressible flow with slip at the walls, fully developed flow and laminar regime was used, by aid of an integral transform approach. In the experimental study, the transitional distribution of temperature was tracked while modifying the R134a flow through the rectangular microchannels. Coolant flow was then maintained at a constant, while the amount of heat absorbed by the vaporizer was varied using multiple electric resistors. A comparative analysis of the analytical and experimental values was conducted.
The present paper intends to provide an analysis of how the process of calefaction occurs in a selective catalytic reduction (SCR) system and the mechanisms by which the deposition of AdBlue crystals on a hot surface evolve. Experimentally, two aluminium samples heated to 200 °C were used, over which AdBlue droplets with different atomisation rates were dropped, maintaining the same dynamic flow parameters, in order to observe the influence of temperature effects on the degree of deposition of crystallised sediment on the surface. The authors proposed the use of calefaction in an ultrasonic environment to prevent deposition and to increase droplet fragmentation by a break-up process. To prove the performance of this method one sample was subjected to a normal flow regime while a second sample was exposed to ultrasound. Both samples were assembled on a magneto-strictive concentrator operating at a frequency of 20 kHz. The obtained results indicated that the sample exposed to ultrasound demonstrated lower urea crystallisation compared to the sample that was not exposed to this treatment. Thus, it can be seen that the proposed method of injecting AdBlue into an ultrasonic zone gives the desired results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.