Proteinuria and increased renal reabsorption of NaCl characterize the nephrotic syndrome. Here, we show that protein-rich urine from nephrotic rats and from patients with nephrotic syndrome activate the epithelial sodium channel (ENaC) in cultured M-1 mouse collecting duct cells and in Xenopus laevis oocytes heterologously expressing ENaC. The activation depended on urinary serine protease activity. We identified plasmin as a urinary serine protease by matrix-assisted laser desorption/ ionization time of-flight mass spectrometry. Purified plasmin activated ENaC currents, and inhibitors of plasmin abolished urinary protease activity and the ability to activate ENaC. In nephrotic syndrome, tubular urokinase-type plasminogen activator likely converts filtered plasminogen to plasmin. Consistent with this, the combined application of urokinase-type plasminogen activator and plasminogen stimulated amiloride-sensitive transepithelial sodium transport in M-1 cells and increased amiloride-sensitive whole-cell currents in Xenopus laevis oocytes heterologously expressing ENaC. Activation of ENaC by plasmin involved cleavage and release of an inhibitory peptide from the ENaC ␥ subunit ectodomain. These data suggest that a defective glomerular filtration barrier allows passage of proteolytic enzymes that have the ability to activate ENaC.
In an open-label, multicenter trial, de novo kidney transplant recipients at low to medium immunological risk were randomized at week 7 posttransplant to remain on CsA (n = 100, controls) or convert to everolimus (n = 102), both with enteric-coated mycophenolate sodium and corticosteroids. The primary endpoint, change in measured GFR (mGFR) from week 7 to month 12, was significantly greater with everolimus than controls: 4.9 (11.8) mL/min versus 0.0 (12.9) mL/min (p = 0.012; analysis of covariance [ANCOVA]). Per protocol analysis demonstrated a more marked difference: an increase of 8.7 (11.2) mL/min with everolimus versus a decrease of 0.4 (12.0) mL/min in controls (p < 0.001; ANCOVA). There were no differences in graft or patient survival. The 12-month incidence of biopsy-proven acute rejection (BPAR) was 27.5% (n = 28) with everolimus and 11.0% (n = 11) in controls (p = 0.004). All but two episodes of BPAR in each group were mild. Adverse events occurred in 95.1% of everolimus patients and 90.0% controls (p = 0.19), with serious adverse events in 53.9% and 38.0%, respectively (p = 0.025). Discontinuation because of adverse events was more frequent with everolimus (25.5%) than controls (3.0%; p = 0.030). In conclusion, conversion from CsA to everolimus at week 7 after kidney transplantation was associated with a greater improvement in mGFR at month 12 versus CNItreated controls but discontinuations and BPAR were more frequent.
Aim: Activation of sodium reabsorption by urinary proteases has been implicated in sodium retention associated with nephrotic syndrome. The study was designed to test the hypothesis that nephrotic proteinuria in mice after conditional deletion of podocin leads to urokinase-dependent, amiloride-sensitive plasmin-mediated sodium and water retention. Methods: Ten days after podocin knockout, urine and faeces were collected for 10 days in metabolic cages and analysed for electrolytes, plasminogen, protease activity and ability to activate γENaC by patch clamp and western blot. Mice were treated with amiloride (2.5 mg kg −1 for 2 days and 10 mg kg −1 for 2 days) or an antiurokinase-type plasminogen activator (uPA) targeting antibody (120 mg kg −1 /24 h) and compared to controls. Results: Twelve days after deletion, podocin-deficient mice developed significant protein and albuminuria associated with increased body wt, ascites, sodium accumulation and suppressed plasma renin. This was associated with increased urinary excretion of plasmin and plasminogen that correlated with albumin excretion, urine protease activity co-migrating with active plasmin, and the ability of urine to induce an amiloride-sensitive inward current in M1 cells in vitro. Amiloride treatment in podocin-deficient mice resulted in weight loss, increased sodium excretion, normalization of sodium balance and prevention of the activation of plasminogen to plasmin in
In nephrotic syndrome, plasminogen is aberrantly filtered from plasma to the urinary space and activated along the tubular system. In vitro, plasmin increases ENaC current by proteolytic cleavage of the γ-subunit. It was hypothesized that preeclampsia is associated with plasmin-dependent ability of tubular fluid to activate ENaC. Urine was sampled from 16 preeclamptic (PE) patients and 17 normotensive pregnant women (Ctrl). Urine was analyzed for plasmin(ogen), creatinine, albumin, aldosterone, Na + , K + , proteolytic activity, and for its effect on inward current in cortical collecting duct cells (M1 cells) by whole-cell patch clamp. In PE, urine plasmin(ogen): creatinine ratio was elevated 40-fold (geometric mean, 160 versus 4 µg/g; P <0.0001) and urine aldosterone: creatinine ratio was suppressed to 25% of Ctrl (geometric mean, 27 versus 109 µg/g; P <0.001). A significant negative correlation was found in PE between urinary plasmin(ogen) and aldosterone ( P <0.05). In PE, proteolytic activity was detected at 90 to 75 kD by gelatin zymography in 14 of 16 patients and confirmed by serine protease assay. Immunoblotting showed active plasmin in PE urine. Whole-cell inward current increased in M1 cells on exposure to urine from PE (173±21%; n=6; P <0.001). The increase in current was abolished by amiloride (2 μmol/L; P <0.001), α 2 -antiplasmin (1 μmol/L; P <0.001), and heat denaturation ( P <0.001). Preeclampsia is associated with urinary excretion of plasmin(ogen) and plasmin-dependent activation of ENaC by urine. Proteolytic activation of ENaC by plasmin may contribute to Na + retention and hypertension in preeclampsia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.