Recent observations of charged colloidal particles trapped at the air-water interface revealed long-range interparticle attractive forces, not accounted for by the standard theories of colloidal interactions. We propose a mechanism for attraction which is based on nonuniform wetting causing an irregular shape of the particle meniscus. The excess water surface area created by these distortions can be minimized when two adjacent particles assume an optimum relative orientation and distance. Typically, for spheres with diameter of 1 &mgr;m at an interparticle distance of 2 &mgr;m, deviations from the ideal contact line by as little as 50 nm result in an interaction energy of the order of 10(4)kT. Roughness-induced capillarity explains the experimental findings, including the cluster dissolution caused by addition of detergent to the subphase and the formation of linear aggregates. This kind of interaction should also be of importance in particle-stabilized foams and emulsions.
Thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) microgel films are shown to allow controlled detachment of adsorbed cells via temperature stimuli. Cell response occurs on the timescale of several minutes, is reversible, and allows for harvesting of cells in a mild fashion. The fact that microgels are attached non‐covalently allows using them on a broad variety of (charged) surfaces and is a major advantage as compared to approaches relying on covalent attachment of active films. In the following, the microgels’ physico‐chemical parameters in the adsorbed state and their changes upon temperature variation are studied in order to gain a deeper understanding of the involved phenomena. By means of atomic force microscopy (AFM), the water content, mechanical properties, and adhesion forces of the microgel films are studied as a function of temperature. The analysis shows that these properties change drastically when crossing the critical temperature of the polymer film, which is the basis of the fast cell response upon temperature changes. Furthermore, nanoscale mechanical analysis shows that the films posses a nanoscopic gradient in mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.