In animals and plants, pathogen recognition triggers the local activation of intracellular signaling that is prerequisite for mounting systemic defenses in the whole organism. We identified that Arabidopsis thaliana isoform CPK5 of the plant calcium-dependent protein kinase family becomes rapidly biochemically activated in response to pathogen-associated molecular pattern (PAMP) stimulation. CPK5 signaling resulted in enhanced salicylic acid-mediated resistance to the bacterial pathogen Pst DC3000, differential plant defense gene expression, and synthesis of reactive oxygen species (ROS). Using selected reaction monitoring MS, we identified the plant NADPH oxidase, respiratory burst oxidase homolog D (RBOHD), as an in vivo phosphorylation target of CPK5. Remarkably, CPK5-dependent in vivo phosphorylation of RBOHD occurs on both PAMP-and ROS stimulation. Furthermore, rapid CPK5-dependent biochemical and transcriptional activation of defense reactions at distal sites is compromised in cpk5 and rbohd mutants. Our data not only identify CPK5 as a key regulator of innate immune responses in plants but also support a model of ROS-mediated cell-to-cell communication, where a self-propagating mutual activation circuit consisting of the protein kinase, CPK5, and the NADPH oxidase RBOHD facilitates rapid signal propagation as a prerequisite for defense response activation at distal sites within the plant.disease resistance | plant innate immunity | ROS signaling R eceptor-mediated recognition of pathogen-associated molecular patterns (PAMPs) triggers the activation of inducible defenses against microbial pathogens in both plants and animals. Some of the earliest PAMP-induced intracellular signaling responses are shared in these two kingdoms (1), including changes in ion fluxes, an increase in the intracellular calcium concentration, the activation of protein kinases, or the synthesis of reactive oxygen species (ROS). These rapid responses are a prerequisite for the subsequent transcriptional reprogramming and alterations in hormone status that ultimately lead to resistance (2, 3). In contrast, the role of calcium-regulated protein kinase signaling in local and systemic immune responses is less well characterized. In the animal system, stimulation of Toll-like receptors TLR2 or TLR4 is known to result in the recruitment and activation of distinct calcium-responsive kinases Ca 2+
A new group of long terminal repeats (LTR) retrotransposons, termed terminal-repeat retrotransposons in miniature (TRIM), are described that are present in both monocotyledonous and dicotyledonous plant. TRIM elements have terminal direct repeat sequences between Ϸ100 and 250 bp in length that encompass an internal domain of Ϸ100 -300 bp. The internal domain contains primer binding site and polypurine tract motifs but lacks the coding domains required for mobility. Thus TRIM elements are not capable of autonomous transposition and probably require the help of mobility-related proteins encoded by other retrotransposons. The structural organization of TRIM elements suggests an evolutionary relationship to either LTR retrotransposons or retroviruses. The past mobility of TRIM elements is indicated by the presence of flanking 5-bp direct repeats found typically at LTR retrotransposon insertion sites, the high degree of sequence conservation between elements from different genomic locations, and the identification of related to empty sites (RESites). TRIM elements seem to be involved actively in the restructuring of plant genomes, affecting the promoter, coding region and intron-exon structure of genes. In solanaceous species and maize, TRIM elements provided target sites for further retrotransposon insertions. In Arabidopsis, evidence is provided that the TRIM element also can be involved in the transduction of host genes.mobile elements ͉ transduction ͉ nonautonomous ͉ genome evolution ͉ sequence analysis
Beyond the rewards of plant genome analysis and gene identification, characterisation of protein activities, post-translational modifications and protein complex composition remains a challenge for plant biologists. Ideally, methods should allow rapid isolation of proteins from plant material achieving a high degree of purity. We tested three purification strategies based on the eight-amino acid StrepII, six-amino acid His 6 and 181-amino acid Tandem Affinity Purification (TAP) affinity tags for enrichment of a membraneanchored protein kinase, NtCDPK2, and a soluble protein, AtSGT1b, from leaf extracts. Transiently expressed StrepII-tagged NtCDPK2 was purified from Nicotiana benthamiana to almost complete homogeneity in less than 60 min and was directly suitable for enzymatic or mass-spectrometric analyses, allowing the identification of in planta phosphorylation sites. In contrast, purification of NtCDPK2 via His 6 tag yielded partially oxidised protein of low purity. AtSGT1b could be isolated after transient expression from N. benthamiana or from transgenic Arabidopsis thaliana as either TAP-tagged or StrepII-tagged protein.While StrepII-tag purification achieved similar yield and high purity as the TAP-tag strategy, it was considerably easier and faster. Using either tagging strategy, a protein was co-purified with AtSGT1b from N. benthaniana and A. thaliana leaf extracts, suggesting that both the StrepII and TAP tags are suitable for purification of protein complexes from plant material. We propose that the StrepII epitope, in particular, may serve as a generally utilizable tag to further our understanding of protein functions, post-translational modifications and interaction dynamics in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.