The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are used.
BackgroundRepresentatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans.ResultsWe sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1) in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution) using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea.ConclusionIn conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.
Diseases affecting coral have led to massive decline and altered the community structure of reefs. In response to immune challenges, cnidaria activate apoptotic or autophagic pathways, and the particular pathway correlates with disease sensitivity (apoptosis) or resistance (autophagy).Although cnidaria contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive stony coral, and Porites astreoides, a disease-resistant stony coral. The four caspases are predicted homologs of human caspases-3 and -7, but OfCasp3a and PaCasp7a contain an amino-terminal caspase activation and recruitment domain (CARD) similar to human initiator/inflammatory caspases. In contrast, OfCasp3b and PaCasp3 have short pro-domains, like human effector caspases. We show that OfCasp3a and PaCasp7a are DxxDases, like human caspases-3 and -7, while OfCasp3b and PaCasp3 are more similar to human caspase-6, with VxxDase activity. Our biochemical analyses suggest a mechanism in coral in which the CARD-containing DxxDase is activated on death platforms, but the protease does not directly activate the VxxDase. We also report the first X-ray crystal structure of a coral caspase, that of PaCasp7a determined at 1.57Å resolution. The structure reveals overall conservation of the caspase-hemoglobinase fold in coral as well as an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species, suggesting mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization.P. astreoides and O. faveolata contain VxxDases similar to HsCasp6. Our data show that the enzymes from both species have similar biochemical properties and are activated by similar mechanisms. Together, the data show that the role of the caspase cascade in disease resistance of P. astreoides or in disease sensitivity of O. faveolata may derive from differences in response mechanisms in the death receptor or the PIDDosome activation platforms, that is, signaling events upstream of the caspase cascade. Since the caspases in the two species exhibit similar biochemical properties and activation mechanisms, our data suggest that differences in the receptor-mediated activation of caspases as well as cross-talk between the autophagic and apoptotic pathways in the two coral species lead to the different physiological responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.