Previously published anomalous whole-rock stable isotopic values from the Poison Strip Sandstone Member of the Cretaceous Cedar Mountain Formation (CMF) of eastern Utah are of uncertain origins. This study investigated the diagenetic history and the processes responsible for these anomalous data. Accordingly, we integrated photomicroscopic techniques including polarized light microscopy, epifluorescence and cathodoluminescence (CL) imaging, micromilling of stable isotope samples, and fluid-inclusion heating and freezing measurements to this end. The key observations involved the microscopic mapping of calcite cement stratigraphy using CL imaging to permit the analysis of stable isotopes of calcite cements that crystallized during early and late diagenesis. The mapping of calcite cement zones of sufficient submillimeter size to mill out and isolate microgram-sized stable isotope samples enabled this discrimination. Early diagenetic calcite cements have the most positive δ18O values (-10 to -8.5‰ Vienna Pee Dee Belemnite [VPDB]) of all components. The pattern of δ13C and δ18O variation in this early diagenetic cement indicates affinities with early meteoric diagenesis previously documented in published literature on the CFM. The late diagenetic calcite cements yield the most negative δ18O values (-18 to -16‰ VPDB). We interpret the late diagenetic cements to be responsible for the anomalously low whole-rock δ18O values previously reported from the Poison Strip Sandstone Member. Our discoveries of bitumen in late-stage pore fillings and liquid petroleum in the fluid inclusions of late diagenetic calcite cements of the Poison Strip Sandstone Member explain the lower whole-rock organic matter δ13C values and anomalous Δ13C values reported from the unit. Comparatively lower carbonate δ18O and organic δ13C values originally derived from whole-rock analyses of samples from the Poison Strip Sandstone Member resulted from high-temperature basinal diagenesis (hydrothermal circulation and/or petroleum migration), rather than the alternative interpretation of early diagenesis related to a Cretaceous paleoclimatic perturbation. Our results are illustrative of methods to resolve the long-standing geologic problem of discriminating and characterizing products of early vs. late diagenesis in terrigenous clastic sedimentary strata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.