Polymer solar cells have been shown to degrade under X‐rays. Here, in situ polymer photovoltaic performance and recombination lifetimes are measured and it is found that charge accumulation is the primary reason for degradation of solar cells. This is affected by the mixing ratio of donor and acceptor in the bulk heterojunction. Both a quantitative understanding and the physical model of the degradation mechanism are presented. Understanding of the degradation mechanism is extended in polymer donor–acceptor bulk heterojunction systems to propose a material combination for making radiation hard diodes that can find important application in fields ranging from memory arrays to organic X‐ray detectors for medical imaging.
Polymer solar cells have been characterized during and after x-ray irradiation. The open circuit voltage, dark current and power conversion efficiency show degradation consistent with the generation of defect states in the polymer semiconductor. The polymer solar cell device remained functional with exposure to a considerable dose (500 krad (SiO(2))) and showed clear signs of recovery upon removal of the irradiation source (degraded from 4.1% to 2.2% and recovered to 2.9%). Mobility-relaxation time variation, derived from J-V measurement, clearly demonstrates that radiation induced defect generation mechanisms in the organic semiconductor are active and need to be further studied. Optical transmission results ruled out the possibility of reduced light absorption and/or polymer crystallinity. The results suggest that organic solar cells are sufficiently radiation tolerant to be useful for space applications.
In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.