Machine learning methods have been widely applied to big data analysis in genomics and epigenomics research. Although accuracy and efficiency are common goals in many modeling tasks, model interpretability is especially important to these studies towards understanding the underlying molecular and cellular mechanisms. Deep neural networks (DNNs) have recently gained popularity in various types of genomic and epigenomic studies due to their capabilities in utilizing large-scale high-throughput bioinformatics data and achieving high accuracy in predictions and classifications. However, DNNs are often challenged by their potential to explain the predictions due to their black-box nature. In this review, we present current development in the model interpretation of DNNs, focusing on their applications in genomics and epigenomics. We first describe state-of-the-art DNN interpretation methods in representative machine learning fields. We then summarize the DNN interpretation methods in recent studies on genomics and epigenomics, focusing on current data- and computing-intensive topics such as sequence motif identification, genetic variations, gene expression, chromatin interactions and non-coding RNAs. We also present the biological discoveries that resulted from these interpretation methods. We finally discuss the advantages and limitations of current interpretation approaches in the context of genomic and epigenomic studies. Contact:xiaoman@mail.ucf.edu, haihu@cs.ucf.edu
This paper describes an investigation into creating agents that can learn how to perform a task by observing an expert, then seamlessly turn around and teach the same task to a less proficient person. These agents are taught through observation of expert performance and thereafter refined through unsupervised practice of the task, all on a simulated environment. A less proficient human is subsequently taught by the now-trained agent through a third approach-coaching, executed through a haptic device. This approach addresses tasks that involve complex psychomotor skills. A machine-learning algorithm called PIGEON is used to teach the agents. A prototype is built and then tested on a task involving the manipulation of a crane to move large container boxes in a simulated shipyard. Two evaluations were performed-a proficiency test and a learning rate test. These tests were designed to determine whether this approach improves the human learning more than self-experimentation by the human. While the test results do not conclusively show that our approach provides improvement over self-learning, some positive aspects of the results suggest great potential for this approach.
MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation and phenotype development. Understanding the regulation of miRNA genes is critical to understand gene regulation. One of the challenges to study miRNA gene regulation is the lack of condition-specific annotation of miRNA transcription start sites (TSSs). Unlike protein-coding genes, miRNA TSSs can be tens of thousands of nucleotides away from the precursor miRNAs and they are hard to be detected by conventional RNA-Seq experiments. A number of studies have been attempted to computationally predict miRNA TSSs. However, high-resolution condition-specific miRNA TSS prediction remains a challenging problem. Recently, deep learning models have been successfully applied to various bioinformatics problems but have not been effectively created for condition-specific miRNA TSS prediction. Here we created a two-stream deep learning model called D-miRT for computational prediction of condition-specific miRNA TSSs (http://hulab.ucf.edu/research/projects/DmiRT/). D-miRT is a natural fit for the integration of low-resolution epigenetic features (DNase-Seq and histone modification data) and high-resolution sequence features. Compared with alternative computational models on different sets of training data, D-miRT outperformed all baseline models and demonstrated high accuracy for condition-specific miRNA TSS prediction tasks. Comparing with the most recent approaches on cell-specific miRNA TSS identification using cell lines that were unseen to the model training processes, D-miRT also showed superior performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.