The fouling of AISI 316L stainless steel during themanufacture of polymeric methylene diphenyl diisocyanate (pMDI) has been investigated. Studies have been carried out using a laboratory-based rig that simulates the process chemistry of the production plant. A variety of solution concentrations and treatment times have been employed to represent different stages in the production process. Following exposure, steel coupons have been removed and studied by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The thickness of the fouling layer, determined by XPS, is found to vary inversely with exposure time and solution concentration. This is a result of the solubility of the different pMDI derivatives that have been formed at different stages, and a reaction scheme is developed to explain these inverse relationships. ToF-SIMS indicates the formation of metal chlorides as a result of the initial treatment of the steel in the reaction vessel with hydrogen chloride. Fragment ions characteristic of reacted and unreacted pMDI (at m/z = 106 and 132 au, respectively) were used as an indicator of the degree of reacted isocyanate groups within the fouling layer and show a decrease with increasing exposure time, as a result of the formation of intermediates such as amines, ureas, carbodiimides, and uretonimines. The ToF-SIMS data was also processed by principal component analysis (PCA). This generally reinforced the conclusions reached by XPS and ToF-SIMS but, in addition, gave confidence in the repeatability of the analyses with the repeat data (of four analyses) clustering very tightly in the PCA score plots.
The interactions between oxidised tantalum and methylene diphenyl diisocyanate (MDI) have been investigated by X-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS). Thin (approximately 2 nm) and thick layers of polymeric MDI were deposited on tantalum; one set was cured at 200 C, the other dried at ambient temperature (20 C). The thick layers serve as a characteristic pMDI layer, and thin layers contain information relating to the nature of interfacial bonding. By careful fitting of the N1s region contributions relating to interfacial bonding have been established. All spectra show an N δ+ contribution indicative of acid-base bonding; in the case of the thick films, this is of an intermolecular nature whereas in the thin films, the more intense contribution is a result of such forces between pMDI and substrate. This is confirmed by ToF-SIMS. A lower binding energy component at ca 396 eV on the air-dried thin layer of pMDI is the result of a formal reaction between pMDI and tantalum yielding a nitride-like species in the N1s spectrum.
In this paper, carbon steel corrosion rates from experiments performed in situ (performed in an underground rock laboratory) and ex situ (performed in a conventional laboratory) test methods in anaerobic saturated bentonite are compared. The results indicate that the long‐term corrosion rate follows a power law decay curve, with a higher initial rate and greater rate of decay at higher temperature. In compacted bentonite blocks, varying the density has no significant effect on the corrosion rate measured during in situ testing, whereas granular bentonite of an equal dry density leads to a higher corrosion rate. Precorrosion of test specimens in an aerated solution at room temperature has a negligible effect on the subsequent anaerobic corrosion rate when tested ex situ for durations up to 11.8 years. The main difference between in situ and ex situ tests is the formation of silicon‐rich corrosion products in the ex situ tests but not in the in situ tests. Despite these differences, the corrosion rates in both tests exhibit the same general temporal evolution and similar magnitudes, suggesting that the main steel degradation processes are maintained in both configurations.
Waterborne coatings emit a low amount of harmful volatile organic compounds (VOCs) into the atmosphere compared to solvent-cast coatings. A typical waterborne formulation for agricultural applications consists of colloidal thermoplastic particles (latex) as the binder, a thickener to raise the viscosity, inorganic filler particles with a water-soluble dispersant, and a colloidal wax to modify surface properties. The formulations typically contain hygroscopic species that are potentially subject to softening by environmental moisture. The hardness, tack adhesion, and coefficient of friction of formulated coatings determines their suitability in applications. However, the relationship of these properties to the components in a coating formulation has not been adequately explored. Furthermore, the relationship between hygroscopic components and properties is an added complication. Here, we have characterized the hardness and tack adhesion of model formulated coatings using a single micro-indentation cycle with a conical indenter under controlled temperatures (above and below the glass transition temperature of a latex binder) and relative humidities. In parallel, we measured the coefficient of kinetic friction, μk, for the same coatings using a bespoke testing rig under controlled environmental conditions. Across a range of temperatures, RH and compositions, we find an inverse correlation between the coating hardness and μk. Any correlation of μk with the roughness of the coatings, which varies with the composition, is less clear. Formulations that contain wax additives have a higher μk at a low RH of 10%, in comparison to formulations without wax. For the wax formulations, μk decreases when the RH is raised, whereas in non-wax formulations, μk increases with increasing RH. Wax-containing coatings are hydrophilic (with a lower water contact angle), however the wax has a lower water permeability. A lubricating layer of water can explain the lower observed μk in these formulations. The addition of wax is also found to planarize the coating surface, which leads to higher tack adhesion in dry coatings in comparison to coatings without wax. Greater adhesive contact in these coatings can explain their higher friction. Our systematic research will aid the design of seed coating formulations to achieve their optimum properties under a wide range of environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.