BackgroundSpinocerebellar ataxia (SCA) and multiple system atrophy-cerebellar type (MSA-C) often present with similar clinical manifestations in the beginning. Magnetic resonance spectroscopy (MRS) has been proved to be a useful tool to help differentiate different types of SCA and MSA-C on cross-sectional studies. However, longitudinal changes of the MRS metabolites in these subjects have never been reported. The purpose of this study was to track the longitudinal evolution of the MRS metabolites in these patients and to ascertain the correlation between clinical severity measured by Scale of the Assessment and Rating of Ataxia (SARA) and MRS metabolites.ResultsSignificant reductions of NAA/Cr and NAA/Cho in the cerebellar hemispheres in all patients and lower Cho/Cr in the cerebellar hemispheres in patients with SCA2 or MSA-C were found at all times. At initial assessments, patients with MSA-C or SCA2 tended to have lower NAA/Cr and Cho/Cr in the cerebellar hemispheres than those with SCA3 or SCA6. At follow-ups, patients with SCA2 or MSA-C had a lower NAA/Cr in cerebellar hemispheres than those with SCA3 or SCA6. Patients with MSA-C had a lower NAA/Cr in the vermis and Cho/Cr in the cerebellar hemispheres than those with SCA2 at the start, and had a lower NAA/Cr in cerebellar hemispheres than those with SCA2 at follow-ups.ConclusionCharacteristic patterns of neurodegenerative evolution were observed in patients with disparate SCAs and MSA-C using MRS and SARA. A continual impairment of neuronal integrity was observed in all groups of patients. The longitudinal changes of MRS metabolites and SARA scores were most striking in patients with SCA2 and MSA-C. Although the changes in the metabolites on MRS may still be used to help understand the pathophysiology of ataxia disorders, they are short of being a good biomarker.
Object In the modern era, stereotactic radiosurgery is an important part of the multidisciplinary and multimodality approach used to treat dural carotid-cavernous fistulas (DCCFs). Based on the ease of performance of techniques to fuse cerebral angiography studies with MR images or CT scans during the radiosurgical procedure, the Gamma Knife and XKnife are 2 of the most popular radiosurgical instruments for patients with DCCF. In this study, the authors compared the efficacy, neurological results, and complications associated with these 2 radiosurgical devices when used for DCCF. Methods Records for 41 patients with DCCF (15 treated using the XKnife and 26 with Gamma Knife surgery [GKS]) were retrieved from a radiosurgical database encompassing the period of September 2000 to August 2008. Among these patients, at least 2 consecutive MR imaging or MR angiography studies obtained after radiosurgery were available for determining radiological outcome of the fistula. All patients received regular follow-up to evaluate the neurological and ophthalmological function at an interval of 1–3 months. The symptomatology, obliteration rate, radiation dose, instrument accuracy, and adverse effects were determined for each group and compared between 2 groups. The data were analyzed using the Student t-test. Results The mean age of the patients was 63 ± 2.6 years, and the mean follow-up period was 63.1 ± 4.4 months (mean ± SD). Thirty-seven patients (90%) achieved an obliteration of the DCCF (93% in the XKnife cohort and 88% for the GKS cohort). In 34 of 40 patients (85%) with chemosis and proptosis of the eyes, these symptoms were resolved after treatment (4 had residual fistula and 2 had arterializations of sclera). All 5 patients with high intraocular pressure demonstrated clinical improvement. Ten (71%) of 14 patients with cranial nerve palsy demonstrated improvement following radiosurgery. Significant discrepancies of treatment modalities existed between the XKnife and GKS groups, such as radiation volume, conformity index, number of isocenters, instrument accuracy, peripheral isodose line, and maximum dosage. The XKnife delivered significantly higher radiation dosage to the lens, optic nerve, optic chiasm, bilateral temporal lobe, and brainstem. Few adverse events occurred, but included 1 patient with optic neuritis (GKS group), 1 intracranial hemorrhage (XKnife group), 1 brainstem edema (XKnife), and 3 temporal lobe radiation edemas (XKnife). Conclusions Radiosurgery affords a substantial chance of radiological and clinical improvement in patients with DCCFs. The Gamma Knife and XKnife demonstrated similar efficacy in the obliteration of DCCFs. However, a slightly higher incidence of complications occurred in the XKnife group.
Purpose: To introduce a simple gradient-echo arterial spin tagging (GREAST) technique available for most commercial magnetic resonance (MR) systems, for a quick evaluation of tissue perfusion. Materials and Methods:The GREAST technique uses a combination of a short TR spoiled gradient-echo (SPGR) sequence with a selective presaturation radio frequency (RF) pulse that allows acquiring each tagged and control image within 10 -20 seconds. The phantom and human studies were performed for evaluating the feasibility in measurement of local perfusion and the efficacy in alleviation of the asymmetric magnetization transfer (MT) and slice profile effects. Results:Results show a good linear relationship between the signal attenuation caused by the presaturation pulse and flow rates in the phantom experiment and effective alleviation of the asymmetric MT and slice profile effects for various orientations of imaging slices. Human studies showed good perfusion results in brain imaging. Perfusion imaging on the liver and kidney were also conducted. The results could be significantly improved by effectively lessening motion-related artifacts. Conclusion:The GREAST technique is simple, easy to use, and applicable to examine local perfusion of the brain and other organs in the trunk.
ObjectivesVariations in radiological examination procedures and patient load lead to variations in standards of care related to patient safety and healthcare quality. To understand the status of safety measures to protect patients undergoing radiological examinations at residency training hospitals in Taiwan, a follow-up survey evaluating the full spectrum of diagnostic radiology procedures was conducted.DesignQuestionnaires covering 12 patient safety-related themes throughout the examination procedures were mailed to the departments of diagnostic radiology with residency training programmes in 19 medical centres (with >500 beds) and 17 smaller local institutions in Taiwan. After receiving the responses, all themes in 2014 were compared between medical centres and local institutions by using χ2 or 2-sample t-tests.ParticipantsRadiology Directors or Technology Chiefs of medical centres and local institutions in Taiwan participated in this survey by completing and returning the questionnaires.ResultsThe response rates of medical centres and local institutions were 95% and 100%, respectively. As indicated, large medical centres carried out more frequent clinically ordered, radiologist-guided patient education to prepare patients for specific examinations (CT, 28% vs 6%; special procedures, 78% vs 44%) and incident review and analysis (89% vs 47%); however, they required significantly longer access time for MRI examinations (7.00±29.50 vs 3.50±3.50 days), had more yearly incidents of large-volume contrast-medium extravasation (2.75±1.00 vs 1.00±0.75 cases) and blank radiographs (41% vs 8%), lower monthly rates of suboptimal (but interpretable) radiographs (0.00±0.01% vs 0.64±1.84%) and high-risk reminder reporting (0.01±0.16% vs 1.00±1.75%) than local institutions.ConclusionsOur study elucidates the status of patient safety in diagnostic radiology in Taiwan, thereby providing helpful information to improve patient safety guidelines needed for medical imaging in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.