Evolution of stellar bars in disk galaxies is accompanied by dynamical instabilities and secular changes. Following the vertical buckling instability, the bars are known to weaken dramatically and develop a pronounced boxy/ peanut shape when observed edge-on. Using high-resolution N-body simulations of stellar disks embedded in live axisymmetric dark matter halos, we have investigated the long-term changes in the bar morphology, specifically the evolution of the bar size, its vertical structure, and the exchange of angular momentum. We find that following the initial buckling, the bar resumes its growth from deep inside the corotation radius and follows the ultraharmonic resonance thereafter. We also find that this secular bar growth triggers a spectacular secondary vertical buckling instability that leads to the appearance of characteristic boxy/peanut/X-shaped bulges. The secular bar growth is crucial for the recurrent buckling to develop. Furthermore, the secondary buckling is milder, persists over a substantial period of time, $3 Gyr, and can have observational counterparts. Overall, the stellar bars show recurrent behavior in their properties and evolve by increasing their linear and vertical extents, both dynamically and secularly. We also demonstrate explicitly that the prolonged growth of the bar is mediated by continuous angular momentum transfer from the disk to the surrounding halo and that this angular momentum redistribution is resonant in nature: a large number of lower resonances trap disk and halo particles, and this trapping is robust, in broad agreement with the earlier results in the literature.
We present new high-resolution observations of the center of the late-type spiral M100 (NGC 4321) supplemented by 3D numerical modeling of stellar and gas dynamics, including star formation (SF). NIR imaging has revealed a stellar bar, previously inferred from optical and 21 cm observations, and an ovally-shaped ring-like structure in the plane of the disk. The K isophotes become progressively elongated and skewed to the position angle of the bar (outside and inside the `ring') forming an inner bar-like region. The galaxy exhibits a circumnuclear starburst in the inner part of the K `ring'. Two maxima of the K emission have been observed to lie symmetrically with respect to the nucleus and equidistant from it slightly leading the stellar bar. We interpret the twists in the K isophotes as being indicative of the presence of a double inner Lindblad resonance (ILR) and test this hypothesis by modeling the gas flow in a self-consistent gas + stars disk embedded in a halo, with an overall NGC4321-like mass distribution. We have reproduced the basic morphology of the region (the bar, the large scale trailing shocks, two symmetric K peaks corresponding to gas compression maxima which lie at the caustic formed by the interaction of a pair of trailing and leading shocks in the vicinity of the inner ILR, both peaks being sites of SF, and two additional zones of SF corresponding to the gas compression maxima, referred usually as `twin peaks').Comment: 31 pages, postscript, compressed, uuencoded. 21 figures available in postscript, compressed form by anonymous ftp from ftp://asta.pa.uky.edu/shlosman/main100 , mget *.ps.Z. To appear in Ap.
We study the central dark matter (DM) cusp evolution in cosmological galactic halos. Models with and without baryons (baryons+DM, hereafter BDM model, and pure DM, PDM model, respectively) are advanced from identical initial conditions. The DM cusp properties are contrasted by a direct comparison of pure DM and baryonic models. We find a divergent evolution between the PDM and BDM models within the inner ~10 kpc region. The PDM model forms a R^{-1} cusp as expected, while the DM in the BDM model forms a larger isothermal cusp R^{-2} instead. The isothermal cusp is stable until z~1 when it gradually levels off. This leveling proceeds from inside out and the final density slope is shallower than -1 within the central 3 kpc (i.e., expected size of the R^{-1} cusp), tending to a flat core within ~2 kpc. This effect cannot be explained by a finite resolution of our code which produces only a 5% difference between the gravitationally softened force and the exact Newtonian force of point masses at 1 kpc from the center. Neither is it related to the energy feedback from stellar evolution or angular momentum transfer from the bar. Instead it can be associated with the action of DM+baryon subhalos heating up the cusp region via dynamical friction and forcing the DM in the cusp to flow out and to `cool' down. The process described here is not limited to low z and can be efficient at intermediate and even high z.Comment: 4 pages, 4 figures, accepted for publication by the Astrophysical Journal Letters. Minor corrections following the referee repor
We analyze evolution of live disk-halo systems in the presence of various gas fractions, f_gas less than 8% in the disk. We addressed the issue of angular momentum (J) transfer from the gas to the bar and its effect on the bar evolution. We find that the weakening of the bar, reported in the literature, is not related to the J-exchange with the gas, but is caused by the vertical buckling instability in the gas-poor disks and by a steep heating of a stellar velocity dispersion by the central mass concentration (CMC) in the gas-rich disks. The gas has a profound effect on the onset of the buckling -- larger f_gas brings it forth due to the more massive CMCs. The former process leads to the well-known formation of the peanut-shaped bulges, while the latter results in the formation of progressively more elliptical bulges, for larger f_gas. The subsequent (secular) evolution of the bar differs -- the gas-poor models exhibit a growing bar while gas-rich models show a declining bar whose vertical swelling is driven by a secular resonance heating. The border line between the gas-poor and -rich models lies at f_gas ~ 3% in our models, but is model-dependent and will be affected by additional processes, like star formation and feedback from stellar evolution. The overall effect of the gas on the evolution of the bar is not in a direct J transfer to the stars, but in the loss of J by the gas and its influx to the center that increases the CMC. The more massive CMC damps the vertical buckling instability and depopulates orbits responsible for the appearance of peanut-shaped bulges. The action of resonant and non-resonant processes in gas-poor and gas-rich disks leads to a converging evolution in the vertical extent of the bar and its stellar dispersion velocities, and to a diverging evolution in the bulge properties.Comment: 12 pages, 12 figures, accepted for publication by the Astrophysical Journal. Minor corrections following the referee repor
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.