The eukaryotic genome must be precisely organized for its proper function, as genome topology impacts transcriptional regulation, cell division, replication, and repair, among other essential processes. Disruptions to human genome topology can lead to diseases, including cancer. The advent of chromosome conformation capture with high-throughput sequencing (Hi-C) to assess genome organization has revolutionized the study of nuclear genome topology; Hi-C has elucidated numerous genomic structures, including chromosomal territories, active/silent chromatin compartments, Topologically Associated Domains, and chromatin loops. While low-resolution heatmaps can provide important insights into chromosomal level contacts, high resolution Hi-C datasets are required to reveal folding principles of individual genes. Of particular interest are high-resolution chromosome conformation datasets of organisms modeling the human genome. Here, we report the genome topology of the fungal model organism Neurospora crassa at a high resolution. Our composite Hi-C dataset, which merges two independent datasets generated with restriction enzymes that monitor euchromatin (DpnII) and heterochromatin (MseI), along with our DpnII/MseI double digest dataset, provide exquisite detail for both the conformation of entire chromosomes and the folding of chromatin at the resolution of individual genes. Within constitutive heterochromatin, we observe strong yet stochastic internal contacts, while euchromatin enriched with either activating or repressive histone post-translational modifications associates with constitutive heterochromatic regions, suggesting inter-compartment contacts form to regulate transcription. Consistent with this, a strain with compromised heterochromatin experiences numerous changes in gene expression. Our high-resolution Neurospora Hi-C datasets are outstanding resources to the fungal community and provide valuable insights into higher organism genome topology.
Successful copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions may be achieved by several methods. In this paper, four synthetic protocols were performed for direct comparison of time required for the synthesis, yield, and purity of the 1H-1,2,3-triazole products. The methods with Cu(I) catalysts were conventional, microwave heating, solvent-free, and a method using glycerol solvent. The compounds synthesized in this paper were known non-fluorinated triazoles and new fluorinated triazoles. The results lead to the conclusion that the microwave method should be strongly considered for CuAAC syntheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.