Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0–48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells.
BACKGROUND:No methods exist to rapidly and accurately quantify the immune insult created by burn injuries. The development of a rapid, noninvasive clinical biomarker assay that evaluates a burn patient's underlying immune dysfunction and predicts clinical outcomes could transform burn care. We aimed to determine a set of peripheral biomarkers that correlates with clinical outcomes of burn patients.
METHODS:This prospective observational study enrolled two patient cohorts within a single burn center into an institutionally approved institutional review board study. Blood draws were performed <48 hours after injury. Initial unbiased immune gene expression analysis compared 23 burn patients and 6 healthy controls using multiplex immune gene expression analysis of RNA from peripheral blood mononuclear cells. We then performed confirmatory outcomes analysis in 109 burn patients and 19 healthy controls using a targeted rapid quantitative polymerase chain reaction. Findings were validated and modeled associations with clinical outcomes using a regression model.
RESULTS:A total of 149 genes with a significant difference in expression from burn patients compared with controls were identified. Pathway analysis identified pathways related to interleukin (IL)-10 and inducible nitric oxide synthase signaling to have significant z scores. quantitative polymerase chain reaction analysis of IL-10, IL-12, arginase 1 (ARG1), and inducible nitric oxide synthase demonstrated that burn injury was associated with increased expression of ARG1 and IL-10, and decreased expression of nitric oxide synthase 2 (NOS2) and IL-12. Burn severity, acute lung injury, development of infection, failure of skin autograft, and mortality significantly correlated with expression of one or more of these genes. Ratios of IL-10/IL-12, ARG1/NOS2, and (ARG1-IL-10)/ (NOS2-IL-12) transcript levels further improved the correlation with outcomes. Using a multivariate regression model, adjusting for patient confounders demonstrated that (ARG1-IL-10)/(NOS2-IL-12) significantly correlated with burn severity and development of acute lung injury.
CONCLUSION:We present a means to predict patient outcomes early after burn injury using peripheral blood, allowing early identification of underlying immune dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.