Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind‐ and water‐driven erosion. Much of the fire‐related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water‐driven erosion under high‐intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow‐dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold‐season hydrology. Current understanding is limited regarding fire effects on the interaction of wind‐ and cold‐season hydrologic‐driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow‐dominated mountainous sagebrush site over a 2‐year period post‐fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop‐box v‐notch weir. Wildfire consumed nearly all above‐ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post‐fire period. Widespread wind‐driven sediment loading of swales was observed over the first month post‐fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north‐ and south‐facing aspects averaged 0.99–8.62 t ha−1 at the short‐hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long‐hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short‐ to long‐hillslope scales (0.02–0.04 t ha−1), but was similar to first‐year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold‐season hydrologic processes, including rain‐on‐snow, rain‐on‐frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in ...
Wildfires can profoundly alter rates, magnitudes, and ecological influences of aeolian redistribution of sediments and nutrients. This study examines the influence of fire in a semi‐arid ecosystem using 2 years of continuous passive dust trap data in the northern Great Basin, USA. We analyse the mass flux, organic material content, grain size distribution, and geochemistry of the collected samples to trace the fingerprint of the 2015 Soda Fire through space and time. In areas not affected by fire, dust is characterized by silt‐sized median grains, a geochemical signature consistent with a playa source area, and spatially consistent but seasonally variable dust flux rates. Following fire, dust flux increases significantly within and near the burned area. At burned and topographically sheltered sites, dust deposition in the eighth month following fire was 190% higher than dust deposition 2 years post‐revegetation. Topographically exposed sites recorded only modest increases in dust deposition following fire. Analysis of organic matter indicates all dust samples (both burned and unburned) contained an average of 45% organic matter compared to a watershed average of 1.6% organic matter in soils. Geochemical and seasonal dust deposition data from 12 dust traps at a range of elevations indicate that with the removal of stabilizing vegetation after wildfire, differences in topographic position and wind direction lead to preferential redistribution of material across a burned landscape over hillslope scales (0–10 km). We posit post‐fire aeolian redistribution of locally derived material to topographically controlled positions is an important control on the spatial variability of soil depth and characteristics in drylands with complex topography. © 2020 John Wiley & Sons, Ltd.
Aeolian processes play a significant role in the redistribution of sediment and nutrients in sparsely vegetated sagebrush-steppe ecosystems. When fire is introduced to the landscape, decreased surface roughness and associated threshold friction velocities allow for the increased mobility of surface sediments and burnt organic material, mobilizing previously stable material. Once material is entrained, interactions between a dynamic atmosphere and complex topography control the spatial distribution of aeolian deposition over a landscape. Given the significant impact of fire on aeolian processes in semi-arid deserts, we posit that postfire aeolian redistribution of material is an important control on the spatial variability of soil depth and characteristics in semi-arid deserts with complex topography. Our study uses over two years of continuous passive dust trap data collected following the Soda Fire of August 2015 in the northern Great Basin. We analyze the mass flux, organic material content, grain size distribution, and geochemistry of the collected samples to trace the fingerprint of the Soda Fire through space and time. As such, the results of this study will inform research on postfire sediment and carbon redistribution, the spatial variability of soil characteristics, and landform evolution in western rangelands. Our results indicate that seasonal variation in aeolian mass flux is pronounced, with the fall months generating the highest rates of dust flux. Immediately following the Soda Fire of August 2015, the mass flux of both sediment and organic material increased by two to threefold within and proximal to the burned area. Increases v in flux lasted on the landscape until the revegetation of the burned area in the spring of 2016, leaving roughly 8 months of disturbed soil surface conditions. Samples impacted by fire contained 88% fine silt and clay-sized material while undisturbed samples averaged 94%, indicating a temporary increase in the particle size distribution within the burned area. A geochemical comparison of regional and local dust and its sources also indicates a pulse of local sediment mobility following the fire through an increase in the relative concentrations of Titanium (found in local soil) and a decrease in the relative concentrations of Barium and Strontium (found in regional soluble salts). We interpret the cessation in local mobility after revegetation to adequate surface roughness provided from spring "green up" (grasses and forbes) to return vertical fluxes of organic matter and sediment to within pre-disturbance fluctuations. Recent studies in the northern Great Basin have found aspect-controlled differences in soil depth and volumetric water content in mid-elevation sagebrush-steppe ecosystems. North-facing aspects tend to have deeper soils, with higher organic content and greater volumetric water contents throughout the water year than south-facing slopes. Our results indicate that local material is suspended and deposited over small scales (0-10 km) to spatially controlled loc...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.