Summary 1.Habitat choice is an evolutionary product of animals experiencing increased fitness when preferentially occupying high-quality habitat. However, an ecological trap (ET) can occur when an animal is presented with novel conditions and the animal's assessment of habitat quality is poorly matched to its resulting fitness. 2. We tested for an ET for grizzly (brown) bears using demographic and movement data collected in an area with rich food resources and concentrated human settlement. 3. We derived measures of habitat attractiveness from occurrence models of bear food resources and estimated demographic parameters using DNA mark-recapture information collected over 8 years (2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013). We then paired this information with grizzly bear mortality records to investigate kill and movement rates. 4. Our results demonstrate that a valley high in both berry resources and human density was more attractive than surrounding areas, and bears occupying this region faced 17% lower apparent survival. Despite lower fitness, we detected a net flow of bears into the ET, which contributed to a study-wide population decline. 5. This work highlights the presence and pervasiveness of an ET for an apex omnivore that lacks the evolutionary cues, under human-induced rapid ecological change, to assess tradeoffs between food resources and human-caused mortality, which results in maladaptive habitat selection.
The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.
Abstract1. Human activities have dramatic effects on the distribution and abundance of wildlife. Increased road densities and human presence in wilderness areas have elevated human-caused mortality of grizzly bears and reduced bears' use. Management agencies frequently attempt to reduce human-caused mortality by managing road density and thus human access, but the effectiveness of these actions is rarely assessed.2. We combined systematic, DNA-based mark-recapture techniques with spatially explicit capture-recapture models to estimate population size of a threatened grizzly bear population (Kettle-Granby), following management actions to recover this population. We tested the effects of habitat and road density on grizzly bear population density. We tested both a linear and threshold-based road density metric and investigated the effect of current access management (closing roads to the public).3. We documented an c. 50% increase in bear density since 1997 suggesting increased landscape and species conservation from management agencies played a significant role in that increase. However, bear density was lower where road densities exceeded 0.6 km/km 2 and higher where motorised vehicle access had been restricted. The highest bear densities were in areas with large tracts of few or no roads and high habitat quality. Access management bolstered bear density in small areas by 27%. Synthesis and applications.Our spatially explicit capture-recapture analysis demonstrates that population recovery is possible in a multi-use landscape when management actions target priority areas. We suggest that road density is a useful surrogate for the negative effects of human land use on grizzly bear populations, but spatial configuration of roads must still be considered. Reducing roads will increase grizzly bear density, but restricting vehicle access can also achieve this goal. We demonstrate that a policy target of reducing human access by managing road density below 0.6 km/km 2 , while ensuring areas of high habitat quality have no roads, is a reasonable compromise between the need for road access and population recovery goals. Targeting closures to areas of highest habitat quality would benefit grizzly bear population recovery the most.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.