The Fundão tailings dam in the Germano iron mining complex (Mariana, Brazil) collapsed on the afternoon of 5 November 2015, and around 32.6 million cubic meters of mining waste spilled from the dam, causing polluion with mining waste along a trajectory of 668 km, extending to the Atlantic Ocean. The Sela & Tulipa and Selinha dikes, and the main Germano tailings dam, were directly or indirectly affected by the accident. This work presents an investigation using Advanced-Differential Interferometric Synthetic Aperture Radar (A-DInSAR) techniques for risk assessment in these critical structures during 18 months after the catastrophic event. The approach was based on the integration of SBAS (Small Baseline Subset) and PSI (Persistent Scatterer Interferometry) techniques, aiming at detecting linear and nonlinear ground displacements in these mining structures. It used a set of 48 TerraSAR-X images acquired on ascending mode from 11 November 2015 to 15 May 2017. The results provided by the A-DInSAR analysis indicated an overall stability in the dikes and in the main wall of Germano tailings dam, which is in agreement with in situ topographic monitoring. In addition, it was possible to detect areas within the reservoir showing accumulated values of up to −125 mm of subsidence, probably caused by settlements of the waste dry material due to the interruption of the mining waste deposition, and values up to −80 mm on auxiliary dikes, probably caused by continuous traffic of heavy equipment. The spatiotemporal information of surface displacement of this large mining structure can be used for future operational planning and risk control.
Differential Interferometric SAR (DInSAR) has been used to monitor surface deformations in open pit mines and tailings dams. In this paper, ground deformations have been detected on the area of tailings Dam-I at the Córrego do Feijão Mine (Brumadinho, Brazil) before its catastrophic failure occurred on 25 January 2019. Two techniques optimized for different scattering models, SBAS (Small BAseline Subset) and PSI (Persistent Scatterer Interferometry), were used to perform the analysis based on 26 Sentinel-1B images in Interferometric Wide Swath (IW) mode, which were acquired on descending orbits from 03 March 2018 to 22 January 2019. A WorldDEM Digital Surface Model (DSM) product was used to remove the topographic phase component. The results provided by both techniques showed a synoptic and informative view of the deformation process affecting the study area, with the detection of persistent trends of deformation on the crest, middle, and bottom sectors of the dam face until its collapse, as well as the settlements on the tailings. It is worth noting the detection of an acceleration in the displacement time-series for a short period near the failure. The maximum accumulated displacements detected along the downstream slope face were −39 mm (SBAS) and −48 mm (PSI). It is reasonable to consider that Sentinel-1 would provide decision makers with complementary motion information to the in situ monitoring system for risk assessment and for a better understanding of the ongoing instability phenomena affecting the tailings dam.
Difficulties in acquiring a complete aerial photography coverage on a regular basis in the Brazilian Amazon due to adverse environmental conditions affect the quality of the national topographic database. As a consequence, topographic information is still poor, and when available needs to be up-dated or re-mapped. In this research, altimetric information derived from RADARSAT-1 (Fine and Standard modes), SRTM3 (3 arc-seconds) and ASTER (band 3N-3B) was evaluated for topographic mapping in two sites located in the region: Serra dos Carajás (mountainous relief) and Tapajós National Forest (flat terrain). The quality of the information produced from Digital Elevation Models (DEMs) was evaluated regarding field altimetric measurements. Precise topographic field information acquired from Differential Global Positioning System (DGPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DEMs (RADARSAT-1, ASTER) and as Independent Check Points (ICPs) for the calculation of accuracies of the products. The accuracies were estimated by comparison of the DEMs values and real elevation values given by ICPs. The analysis was performed following two approaches: (1) the use of Root Mean Square Error (RMSE) for the overall classification of the DEMs considering the Brazilian Map Accuracy Standards (PEC) limits and, (2) calculations of trend analysis and accuracy based on a methodology that takes into account computed discrepancies and standard deviations. The investigation has shown that for flat relief, the altimetric accuracy of SRTM3 and Fine RADARSAT-1 DEMs fulfilled the PEC requirements for 1:100,000 A Class Map. However, for mountainous terrain, only the altimetry of SRTM3 and ASTER fulfilled these requirements. In addition, the performance of ASTER was slightly superior to SRTM3. However it is important to consider the difficulties in the acquisition of good stereo-pairs with optical data in the Amazon and the additional cost (GCPs) to produce ASTER DEMs. Despite showing systematic errors, the findings justify the usage of SRTM3 as a primary elevation source for semi-detailed topographic mapping in the region. It is suggested a combination of altimetry derived for SRTM3 and planimetry extracted from high-resolution SAR (ALOS/PALSAR, TerraSAR-X, RADARSAT-2) or if available optical data for semi-detailed topographic mapping programs in the Brazilian Amazon, where terrain information is seldom available or presents low quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.