Teaching abstract concepts can be quite complicated. In this sense, understanding Predictive Suffix Trees (PSTs) is particularly challenging since this type of tree-based data structure simultaneously stores and relates information about space, time, and probabilities. This work presents a practical experiment that tries to make the teaching of PSTs more applied, based on the development of a specific application, which is tested and analyzed quantitatively and qualitatively, demonstrating that the proposed solution can be a viable educational alternative.Resumo. O ensino de conceitos abstratos pode ser bastante complexo. Nesse sentido, compreender Predictive Suffix Trees (PSTs)é particularmente desafiador, uma vez que esse tipo de estrutura de dados, baseada emárvores, armazena e relaciona simultaneamente informações sobre espaço, tempo e probabilidades. Esse trabalho apresenta um experimento prático que visa tornar mais aplicado o ensino de PSTs, baseando-se no desenvolvimento de uma aplicação específica, queé testada e analisada quantitativa e qualitativamente, demonstrando que a solução proposta pode ser uma alternativa educacional viável.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.