Highlights : Recovery of severely deformed ferrite was followed in situ by High Energy X Ray Diffraction during heating and isothermal holding experiments. Dislocation densities during annealing were determined by a modified Williamson Hall method. A saturation in recovery has been observed in all studied conditions whatever the holding temperature. The beginning of recrystallization is detected by a large density drop at 650 °C.
Austenite formation was numerically investigated using Thermo-Calc/DICTRA in a deformed ferrite/pearlite microstructure to produce dual-phase steels. This work aims to better understand how the interface conditions (local equilibrium with negligible partitioning—LENP—or local equilibrium with partitioning—LEP) control the austenite growth kinetics during the intercritical annealing. Inspired by our experimental observations, two nucleation sites were considered. The austenite formed from pearlite islands showed a regime transition from LENP to LEP when the holding stage started. For the growth of austenite from isolated carbides, three stages were identified during the heating stage: first, slow growth under LEP; then, fast growth under LENP; and finally, after dissolution of the carbide, slow growth again. LENP and LEP interface conditions may coexist thanks to these regime transitions. In the case of competition, LEP conditions hinder austenite growth while it is promoted by LENP interface conditions. Such differences in growth kinetics explain, in part, the morphogenesis of dual-phase microstructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.