Abstract. The Green Edge initiative was developed to investigate the processes controlling the primary productivity and fate of organic matter produced during the Arctic phytoplankton spring bloom (PSB) and to determine its role in the ecosystem. Two field campaigns were conducted in 2015 and 2016 at an ice camp located on landfast sea ice southeast of Qikiqtarjuaq Island in Baffin Bay (67.4797∘ N, 63.7895∘ W). During both expeditions, a large suite of physical, chemical and biological variables was measured beneath a consolidated sea-ice cover from the surface to the bottom (at 360 m depth) to better understand the factors driving the PSB. Key variables, such as conservative temperature, absolute salinity, radiance, irradiance, nutrient concentrations, chlorophyll a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, and carbon stocks and fluxes were routinely measured at the ice camp. Meteorological and snow-relevant variables were also monitored. Here, we present the results of a joint effort to tidy and standardize the collected datasets, which will facilitate their reuse in other Arctic studies. The dataset is available at https://doi.org/10.17882/59892 (Massicotte et al., 2019a).
Although mesoscale convective systems (MCSs) are the main source of precipitation in the semi-arid Sahel region, the relationship between MCS characteristics and their generated precipitation remain unclear. However, a thorough understanding of this relation is essential to work towards a classification scheme for MCSs and eventually to improve quantitative precipitation estimates in which cloud parameters are used as proxy variables for the total or maximum intense rainfall from a system. Accordingly, this study aims to analyse the cloud parameters and rain variables distributions and their concurrence before quantifying the relationships between them. This is done using hourly EUMETSAT's Meteosat-8 infrared (10.8 µm) images, 3-hourly precipitation data from National Aeronautics and Space Administration (NASA)'s Tropical Rainfall Measuring Mission and an MCS tracking algorithm. The period of interest extends from 1 June till 22 September 2006 and the area of interest covers the Lake Chad region. Results indicate that MCSs in the Sahel region generally show a maximum cloud coverage around 57 000 km 2 , a life duration of 9 h, an embedded convective core during 6 h and precipitation peaks around 12.3 mm h −1 . A recurrent sequence of cloud and rain variables is also noticed; maximum in cloud coverage is mostly preceded by a minimum in brightness temperature in the cold convective core and is followed by a peak in precipitation. Longer-lived and larger MCSs as well as MCSs embedding very cold and long-lived convective cores exhibit an increased likelihood to induce more intense precipitation. Focussing on the characteristics of the cold convective core rather than on the characteristics of the entire system appears to be more relevant to predict the precipitation as the former are better correlated with the generated precipitation and can be used as proxy parameter for estimations of maximum intense precipitation using two-dimensional nonlinear regression models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.