SUMMARY How polycomb group proteins repress gene expression in vivo is not known. While histone-modifying activities of the polycomb repressive complexes (PRCs) have been studied extensively, in vitro data have suggested a direct activity of the PRC1 complex in compacting chromatin. Here, we investigate higher-order chromatin compaction of polycomb targets in vivo. We show that PRCs are required to maintain a compact chromatin state at Hox loci in embryonic stem cells (ESCs). There is specific decompaction in the absence of PRC2 or PRC1. This is due to a PRC1-like complex, since decompaction occurs in Ring1B null cells that still have PRC2-mediated H3K27 methylation. Moreover, we show that the ability of Ring1B to restore a compact chromatin state and to repress Hox gene expression is not dependent on its histone ubiquitination activity. We suggest that Ring1B-mediated chromatin compaction acts to directly limit transcription in vivo.
In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear “compartments”. Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types.
PC4-and SF2-interacting protein 1 (Psip1)-also known as lens epithelium-derived growth factor (Ledgf)-is a chromatin-associated protein that has been implicated in transcriptional regulation, mRNA splicing, and cell survival in vitro, but its biological function in vivo is unknown. We identified an embryonic stem cell clone with disrupted Psip1 in a gene trap screen. The resulting Psip1-geo fusion protein retains chromatin-binding activity and the PWWP and AT hook domains of the wild-type protein but is missing the highly conserved C terminus. The majority of mice homozygous for the disrupted Psip1 gene died perinatally, but some survived to adulthood and displayed a range of phenotypic abnormalities, including low fertility, an absence of epididymal fat pads, and a tendency to develop blepharitis. However, contrary to expectations, the lens epithelium was normal. The mutant mice also exhibited motor and/or behavioral defects such as hind limb clenching, reduced grip strength, and reduced locomotor activity. Finally, both Psip1 ؊/؊ neonates and surviving adults had craniofacial and skeletal abnormalities. They had brachycephaly, small rib cages, and homeotic skeletal transformations with incomplete penetrance. The latter phenotypes suggest a role for Psip1 in the control of Hox expression and may also explain why PSIP1 (LEDGF) is found as a fusion partner with NUP98 in myeloid leukemias.PC4-and SF2-interacting protein 1 (Psip1) has been isolated in a number of independent experimental settings and has been assigned a variety of names and putative functions. Psip1 encodes two protein isoforms with molecular masses of 52 and 75 kDa. p52 and p75 were identified as interacting with transcription factor PC4 and shown to act as transcriptional coactivators (8). p75 is also referred to as lens epithelium-derived growth factor (LEDGF) since it was identified as a cell survival factor under a variety of conditions of environmental stress, and it has been implicated as a transcriptional regulator of stress-related genes (32). PSIP1 (LEDGF) is also a nuclear autoantigen targeted by autoantibodies in some patients with atopic dermatitis and other inflammatory conditions involving dysregulated apoptosis. It is thought to exert an antiapoptotic effect by transcriptional activation of stress-related genes (7), and it is cleaved by caspases (38).Psip1 has been reported to localize to chromatin in both interphase and mitotic chromosomes (27,28,35,37). The N-terminal domain of Psip1 contains a PWWP domain (Fig. 1B), a member of the Tudor domain "royal family" that includes chromo domains-some of which are known to bind to chromatin (24). There are conflicting data on the ability of the Psip1 PWWP domain to bind to free DNA in vitro (33,36). The PWWP domain of the DNA methyltransferase Dnmt3b is required for targeting the protein to chromatin and chromosomes (2, 10), and the Psip1 PWWP domain also affects the interaction of the protein with chromatin in vivo (36). Psip1 also contains AT hook-like motifs (Fig. 1B), and some of the...
In vertebrates, cytosine methylation is an epigenetic DNA modification that participates in genome stability and gene repression. Methylation patterns are either maintained throughout cell division, or modified by global or local de novo methylation and demethylation. Site-specific demethylation is a rather elusive process that occurs mainly in parallel to gene activation during development. In light of our studies of the glucocorticoid-dependent DNA demethylation of the tyrosine aminotransferase gene, we discuss the potential biochemical mechanisms allowing DNA demethylation and its targeting to specific sequences by transcription factors as well as possible links to DNA replication and chromatin remodelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.