Laboratoire d 0 Energ etique, d 0 Electronique et Proc ed es, Universit e de la R eunion, R eunion, France ABSTRACT This paper aims at separating the respective influences of tropical and midlatitude variability on the development and life cycle of tropical temperate troughs (TTTs) over southern Africa in austral summer (November-February). Cluster analysis is applied to 1971-2000 40-yr ECMWF Re-Analysis (ERA-40) daily outgoing longwave radiation (OLR) anomalies to identify TTTs and monitor tropical convection. The same analysis applied to the zonal wind stretching deformation at 200 hPa (ZDEF) characterizes midlatitude transient perturbations. Results based on the comparison between these two classifications first confirm that midlatitude baroclinic waves are a necessary condition for TTT development, but they are not sufficient. Roughly 40% of those occurring in austral summer are associated with a TTT. They tend to be stronger than the baroclinic waves not associated with TTT development. In the tropics, additional conditions needed to form a TTT consist of an excess of latent energy over the Mozambique Channel, mostly because of moisture advections and convergence from the Atlantic and Indian Oceans. Taken together, these conditions are highly favorable for deep atmospheric convection over and near southern Africa and seem to explain a large fraction of TTT variability.
Future changes in the structure of daily rainfall, especially the number of rainy days and the intensity of extreme events, are likely to induce major impacts on rain-fed agriculture in the tropics. In Africa this issue is of primary importance, but the agreement between climate models to simulate such descriptors of rainfall is generally poor. Here, we show that the climate models used for the fifth assessment report of IPCC simulate a marked decrease in the number of rainy days, together with a strong increase in the rainfall amounts during the 1% wettest days, by the end of the 21st century over Southern Africa. These combined changes lead to an apparent stability of seasonal totals, but are likely to alter the quality of the rainy season. These evolutions are due to the superposition of slowly-changing moisture fluxes, mainly supported by increased hygrometric capacity associated with global warming, and unchanged short-term atmospheric configurations in which extreme events are embedded. This could cause enhanced floods or droughts, stronger soil erosion and nutriment loss, questioning the sustainability of food security for the 300 million people currently living in Africa south of the Equator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.