Sea breeze (SB) phenomena may strongly influence air quality and lead to important effects on human health. In order to study the impact of SB dynamics on the properties and toxicity of aerosols, an atmospheric mobile unit was deployed during a field campaign performed in an urbanized and industrialized coastal area in Northern France. This unit combines aerosol samplers, two scanning lidars (Doppler and elastic) and an air-liquid interface (ALI, Vitrocell®) in vitro cell exposure device. Our study highlights that after the passage of an SB front, the top of the atmospheric boundary layer collapses as the thermal internal boundary layer (TIBL) develops, which leads to high aerosol extinction coefficient values (>0.4 km−1) and an increase of PM2.5 and NOx concentrations in the SB current. The number-size distribution of particles indicates a high proportion of fine particles (with diameter below 500 nm), while the volume-size distribution shows a major mode of coarse particles centered on 2–3 µm. Individual particle analyses performed by cryo-transmission scanning electron microscopy (cryo-TSEM)-EDX highlights that submicronic particles contained a high fraction of secondary compounds, which may result from nucleation and/or condensation of condensable species (vapors or gaseous species after photo-oxidation). Secondary aerosol (SA) formation can be enhanced in some areas, by the interaction between the SB flow and the upper continental air mass, particularly due to the effect of both turbulence and temperature/humidity gradients between these two contrasting air masses. Potential areas of SA formation are located near the ground, during the SB front passage and in the vicinity of the SB current top. During the sea breeze event, an increase in the oxidative stress and inflammation processes in exposed lung cells, compared to the unexposed cells, can also be seen. In some instances, short singularity periods are observed during SB, corresponding to a double flow structure. It consists of two adjacent SB currents that induce an important increase of the TIBL top, improving the pollutants dispersion. This is associated with a substantial decrease of aerosol mass concentrations.
In order to reduce exposure to toxic chemicals, the European REACH regulation (1907/2006) recommends substituting toxic molecules with compounds that are less harmful to human health and the environment. Toluene is one of the most frequently used solvents in industries despite its toxicity. The objective of this study is to better understand and compare the toxicity of toluene and its homologues in a bronchial cell model. Thus, human bronchial BEAS‐2B cells were exposed to steams of toluene, m‐xylene, mesitylene (1,3,5‐trimethylbenzene), and benzene (20 and 100 ppm). Exposure was carried out using an air–liquid interface (ALI) system (Vitrocell) during 1 h/day for 1, 3, or 5 days. Cytotoxicity, xenobiotic metabolism enzyme gene expression, and inflammatory response were evaluated following cell exposures. BEAS‐2B cell exposure to toluene and its homologues revealed the involvement of major (CYP2E1) and minor metabolic pathways (CYP1A1). A late induction of genes (EPHX1, DHDH, ALDH2, and ALDH3B1) was measured from Day 3 and can be linked to the formation of metabolites. An increase in the secretion level of inflammatory markers (TNF‐α, IL‐6, IL‐8, MCP‐1, and GM‐CSF) was also observed. In parallel, regulation between inflammatory mediators and the expression of transmembrane glycoprotein mucin MUC1 was also studied. This in vitro approach with ALI system points out the relevance of conducting repeated exposures to detect potential late effects. The difference recorded after cell exposure to toluene and its homologues highlights the importance of substitution principle.
Volatile Organic Compounds (VOCs) are known to be hazardous and harmful to human health and the environment. In mixtures or during repeated exposures, significant toxicity of these compounds in trace amounts has been revealed. In vitro air-liquid interface approaches underlined the interest in evaluating the impact of repeated VOC exposure and the importance of carrying out a toxicological validation of the techniques in addition to the standard chemical analyses. The difficulties in sampling and measuring VOCs in stationary source emissions are due to both the complexity of the mixture present and the wide range of concentrations. The coupling of VOC treatment techniques results in efficient systems with lower operating energy consumption. Three main couplings are outlined in this review, highlighting their advantages and relevance. First, adsorption-catalysis coupling is particularly valuable by using adsorption and catalytic oxidation regeneration initiated, for example, by selective dielectric heating. Then, several key aspects of the plasma catalysis process, such as the choice of catalysts suitable for the non-thermal plasma (NTP) environment, the simultaneous removal of different VOCs, and the in situ regeneration of the catalyst by NTP exposure, are discussed. The adsorption-photocatalysis coupling technology is also one of the effective and promising methods for VOC removal. The VOC molecules strongly adsorbed on the surface of the photocatalyst can be directly oxidized by the photogenerated hole on the photocatalyst (e.g., TiO2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.