BackgroundLung cancer is one of the leading causes of death in Europe and the western world. At present, diagnosis of lung cancer very often happens late in the course of the disease since inexpensive, non-invasive and sufficiently sensitive and specific screening methods are not available. Even though the CT diagnostic methods are good, it must be assured that "screening benefit outweighs risk, across all individuals screened, not only those with lung cancer". An early non-invasive diagnosis of lung cancer would improve prognosis and enlarge treatment options. Analysis of exhaled breath would be an ideal diagnostic method, since it is non-invasive and totally painless.MethodsExhaled breath and inhaled room air samples were analyzed using proton transfer reaction mass spectrometry (PTR-MS) and solid phase microextraction with subsequent gas chromatography mass spectrometry (SPME-GCMS). For the PTR-MS measurements, 220 lung cancer patients and 441 healthy volunteers were recruited. For the GCMS measurements, we collected samples from 65 lung cancer patients and 31 healthy volunteers. Lung cancer patients were in different disease stages and under treatment with different regimes. Mixed expiratory and indoor air samples were collected in Tedlar bags, and either analyzed directly by PTR-MS or transferred to glass vials and analyzed by gas chromatography mass spectrometry (GCMS). Only those measurements of compounds were considered, which showed at least a 15% higher concentration in exhaled breath than in indoor air. Compounds related to smoking behavior such as acetonitrile and benzene were not used to differentiate between lung cancer patients and healthy volunteers.ResultsIsoprene, acetone and methanol are compounds appearing in everybody's exhaled breath. These three main compounds of exhaled breath show slightly lower concentrations in lung cancer patients as compared to healthy volunteers (p < 0.01 for isoprene and acetone, p = 0.011 for methanol; PTR-MS measurements). A comparison of the GCMS-results of 65 lung cancer patients with those of 31 healthy volunteers revealed differences in concentration for more than 50 compounds. Sensitivity for detection of lung cancer patients based on presence of (one of) 4 different compounds not arising in exhaled breath of healthy volunteers was 52% with a specificity of 100%. Using 15 (or 21) different compounds for distinction, sensitivity was 71% (80%) with a specificity of 100%. Potential marker compounds are alcohols, aldehydes, ketones and hydrocarbons.ConclusionGCMS-SPME is a relatively insensitive method. Hence compounds not appearing in exhaled breath of healthy volunteers may be below the limit of detection (LOD). PTR-MS, on the other hand, does not need preconcentration and gives much more reliable quantitative results then GCMS-SPME. The shortcoming of PTR-MS is that it cannot identify compounds with certainty. Hence SPME-GCMS and PTR-MS complement each other, each method having its particular advantages and disadvantages. Exhaled breath analysis is promising t...
BackgroundThe routinely used microbiological diagnosis of ventilator associated pneumonia (VAP) is time consuming and often requires invasive methods for collection of human specimens (e.g. bronchoscopy). Therefore, it is of utmost interest to develop a non-invasive method for the early detection of bacterial infection in ventilated patients, preferably allowing the identification of the specific pathogens. The present work is an attempt to identify pathogen-derived volatile biomarkers in breath that can be used for early and non- invasive diagnosis of ventilator associated pneumonia (VAP). For this purpose, in vitro experiments with bacteria most frequently found in VAP patients, i.e. Staphylococcus aureus and Pseudomonas aeruginosa, were performed to investigate the release or consumption of volatile organic compounds (VOCs).ResultsHeadspace samples were collected and preconcentrated on multibed sorption tubes at different time points and subsequently analyzed with gas chromatography mass spectrometry (GC-MS). As many as 32 and 37 volatile metabolites were released by S. aureus and P. aeruginosa, respectively. Distinct differences in the bacteria-specific VOC profiles were found, especially with regard to aldehydes (e.g. acetaldehyde, 3-methylbutanal), which were taken up only by P. aeruginosa but released by S. aureus. Differences in concentration profiles were also found for acids (e.g. isovaleric acid), ketones (e.g. acetoin, 2-nonanone), hydrocarbons (e.g. 2-butene, 1,10-undecadiene), alcohols (e.g. 2-methyl-1-propanol, 2-butanol), esters (e.g. ethyl formate, methyl 2-methylbutyrate), volatile sulfur compounds (VSCs, e.g. dimethylsulfide) and volatile nitrogen compounds (VNCs, e.g. 3-methylpyrrole).Importantly, a significant VOC release was found already 1.5 hours after culture start, corresponding to cell numbers of ~8*106 [CFUs/ml].ConclusionsThe results obtained provide strong evidence that the detection and perhaps even identification of bacteria could be achieved by determination of characteristic volatile metabolites, supporting the clinical use of breath-gas analysis as non-invasive method for early detection of bacterial lung infections.
The aim of this study was to confirm the existence of volatile organic compounds (VOC) specifically released or consumed by the lung cancer cell line A549, which could be used in future screens as biomarkers for the early detection of lung cancer. For comparison, primary human bronchial epithelial cells (HBEpC) and human fibroblasts (hFB) were included. VOCs were detected in the headspace of cell cultures or medium controls following adsorption on solid sorbents, thermodesorption, and analysis by gas chromatography mass spectrometry. Using this approach, we identified VOCs that behaved similarly in normal and transformed cells. Thus, concentrations of 2-pentanone and 2,4-dimethyl-1-heptene were found to increase in the headspace of A549, HBEpC, and hFB cell cultures. In addition, the ethers methyl tert-butyl ether and ethyl tert-butyl ether could be detected at elevated levels in the case of A549 cells and one of the untransformed cell lines. However, especially branched hydrocarbons and alcohols were seen increased more frequently in untransformed than A549 cells. A big variety of predominantly aldehydes and the ester n-butyl acetate were found at decreased concentrations in the headspace of all cell lines tested compared with medium controls. Again, more different aldehydes were found to be decreased in hFB and HBEpC cells compared with A549 cells and 2-butenal was metabolized exclusively by both control cell lines. These data suggest that certain groups of VOCs may be preferentially associated with the transformed phenotype. Cancer Epidemiol Biomarkers Prev; 19(1); 182-95. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.