Abstract-We describe a method for the automatic recognition of air pollution and fog from a vehicle. Our system consists of sensors to acquire main data from cameras as well as from Light Detection and Recognition (LIDAR) instruments. We discuss how this data can be collected, analyzed and merged to determine the degree of air pollution or fog. S uch data is essentaial for control systems of moving vehicles in making autonomous decisions for avoidance. Backend systems need such data for forecasting and stragtegic traffic planning and control. Laboratory based experimental results are presented for weather conditions like air pollution and fog, showing that the recognition scenario works with better than adequate results. This paper demonstrates that LIDAR technology, already onboard for the purpose of autonomous driving, can be used to improve weather condition recognition when compared with a camera only system. We conclude that the combination of a front camera and a LID AR laser scanner is well suited as a sensor instrument set for air pollution and fog recognition that can contribute accurate data to driving assistance and weather alerting systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.